Navigation auf uzh.ch

Suche

Department of Informatics - Communication Systems Group

Chao Feng

Contact Information:

Universität Zürich Institut für Informatik (IFI),

BIN 2.E.04 Binzmühlestrasse 14 CH-8050 Zürich

Phone: +41 44 635 43 78

Fax: +41 44 635 68 09

Email: IFI Email

Linkedin: LinkedIn

 
chao

 

Short Bio:

Chao Feng is pursuing a Ph.D. in the Department of Informatics at the University of Zurich. He obtained his MSc. in Informatics from the University of Zurich and a BSc. in Management Information System from Renmin University of China. Chao is currently working as a Ph.D. student and Junior Researcher in the Communication Systems Group, supervised by Prof. Dr. Burkhard Stiller. His research primarily focuses on enhancing the cybersecurity of Internet-of-Things (IoT) and improving the robustness of Decentralized Distributed Machine Learning systems,  especially for Decentralized Federated Learning (DFL).

Lecture Activities:

  • PMMK: Protocols for Multi-media Communications (HS22)
  • IntEco: Internet Economics Seminar (HS22, HS23)
  • CESS: Computer Engineering and Software Systems (FS23)
  • ComSys: Communication Systems (FS23)
  • CNSP: Computer Network Security Principles (HS23)

Research Interests:

Cybersecurity
Internet of Things (IoT)
Data Mining and Artificial Intelligence

Open Thesis:

Please check here to see list of open thesisIf you are interested to work on a project in the list mentioned above or any other project related to my research area feel free to contact me.

Publications:

2023

  • [arXiv ] Chao Feng, Alberto Huertas Celdran, Pedro Miguel Sanchez Sanchez, Jan Kreischer, Jan von der Assen, Gerome Bovet, Gregorio Martinez Perez, and Burkhard Stiller. "CyberForce: A Federated Reinforcement Learning Framework for Malware Mitigation." arXiv preprint arXiv:2308.05978 (2023).
  • [arXiv ] Alberto Huertas Celdran, Chao Feng, Pedro Miguel Sanchez Sanchez, Lynn Zumtaugwald, Gerome Bovet, and Burkhard Stiller. "Assessing the Sustainability and Trustworthiness of Federated Learning Models." arXiv preprint arXiv:2310.20435 (2023).
  • [arXiv ] Chao Feng, Alberto Huertas Celdran, Janosch Baltensperger, Enrique Tomas Matınez Bertran, Gerome Bovet, Burkhard Stiller. "Sentinel: An Aggregation Function to Secure Decentralized Federated Learning." arXiv preprint arXiv:2310.08097 (2023).

  • [arXiv ] Chao Feng, Alberto Huertas Celdran, Michael Vuong, Gerome Bovet, Burkhard Stiller. "Voyager: MTD-Based Aggregation Protocol for Mitigating Poisoning Attacks on DFL." arXiv preprint arXiv:2310.08739 (2023).

  • [arXiv ]  Figueredo Franco, Muriel, Fabian Künzler, Jan von der Assen, Chao Feng, and Burkhard Stiller. "RCVaR: an Economic Approach to Estimate Cyberattacks Costs using Data from Industry Reports." arXiv e-prints (2023): arXiv-2307.
  • [arXiv ] Beltrán, Enrique Tomás Martínez, Ángel Luis Perales Gómez, Chao Feng, Pedro Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Celdrán. "Fedstellar: A Platform for Decentralized Federated Learning." arXiv preprint arXiv:2306.09750 (2023).

  • [Full Paper]  Celdrán, Alberto Huertas, Pedro Miguel Sánchez Sánchez, Chao Feng, Gérôme Bovet, Gregorio Martínez Pérez, and Burkhard Stiller. "A Summary of Privacy-preserving and Syscall-based Intrusion Detection System for IoT Sensors Affected by Data Falsification Attacks." In Actas de las VIII Jornadas Nacionales de Investigación en Ciberseguridad: Vigo, 21 a 23 de junio de 2023, pp. 547-548. Universidade de Vigo, 2023.

  • [Full Paper] Chao Feng, Jan von der Assen, Alberto Huertas Celdrán, Steven Näf, Gérôme Bovet, Burkhard Stiller:  FeDef: A Federated Defense Framework Using Cooperative Moving Target Defense2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), Bol/Split, Croatia, June 2023, pp. 1-6.
  • [Full Paper ] Katharina Olga Emilia Müller, Louis Bienz, Bruno Bastos Rodrigues, Chao Feng, Burkhard Stiller: HomeScout: Anti-Stalking Mobile App for Bluetooth Low Energy Devices; The 48th IEEE Conference on Local Computer Networks (LCN), Daytona Beach, Florida, U.S.A., October 2023, pp 1–8.  
  • [Demo] Eryk Schiller, Chao Feng, Rafael Hengen Ribeiro, Francesco Marino, Martin Buck, Burkhard Stiller: TactSR: Utilizing SRv6 to Optimize the Routing Behavior for Tactical Networks; 2023 24th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Boston, USA, June 2023, pp. 1-3. 

2022

  • [Full Paper] K. O. E. Müller, J. von der Assen, C. Feng, and B. Stiller, "An Overview and Ontology of Privacy to Preserve Privacy in Ultra-Wideband Networks," in IEEE International Conference on Privacy Computing, Haikou, China, December 2022, pp. 1-9. (To appear)
  • [Full Paper] A. H. Celdrán, P. M. S. Sánchez, C. Feng, G. Bovet, G. M. Pérez and B. Stiller, "Privacy-preserving and Syscall-based Intrusion Detection System for IoT Spectrum Sensors Affected by Data Falsification Attacks," in IEEE Internet of Things Journal, 2022, doi: 10.1109/JIOT.2022.3213889. Link

Supervised Theses

  • [BA] Filip Trendafilov: Implementation of Membership Inference Attack Affecting Federated Learning-based Anomaly Detection System; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, May 2023, URL: link  
  • [BA] Timothy-Till Näscher: Poisoning Attack Behavior Detection in Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, May 2023, URL: link
  • [BA] Michael Vuong: Design and Implementation of a Byzantine Robust Aggregation Mechanism for Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2023, URL: link
  • [MA] Janosch Baltensperger: A Secure Aggregation Protocol for Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2023, URL: link
  • [BA] Florian Andreas Herzog: Fully Fledged SDN in a LoRa Mesh; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, September 2023, URL: link
  • [BA] Gregory Frommelt: Linux on Tensilica Xtensa; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, September 2023, URL: link
  • [MA] Lynn Zumtaugwald: Designing and Implementing an Advanced Algorithm to Measure the Trustworthiness Level of Federated Learning Models; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2023, URL: link
  • [MA] Róbert Oles: Detection and Classification of Malware using File System Dimensions for MTD on IoT; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, May 2023, URL: link
  • [MA] Jan Kreischer: Federated Reinforcement Learning for Private and Collaborative Selection of Moving Target Defense Mechanisms for IoT Device Security; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, June 2023, URL: link
  • [MA] Chenfei Ma: Design and Prototypical Implementation of the Node Selection Strategy in Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, October 2023, URL: link
  • [MAP] Han, Jing and Cheng, Xi and Zeng, Zien and Ren, Heqing: Creation of New Datasets for Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Jan. 2024, URL: link
  • [MA] Ye Zi: Mitigating Poisoning Attacks in Decentralized Federated Learning through Moving Target Defense; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Mar. 2024, URL: link  
  • [IS] Yuanzhe Gao: Design and Implementation of a Privacy Auditing Component for the Decentralized Federated Learning Framework; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Jun. 2024, URL: link  

 

 

Weiterführende Informationen

Title

Teaser text