Accounting and Monitoring of AAI Services

Phase 2

Deliverable D2

AMAAIS Phase 2: Architecture Design
and Implementation

The AMAAIS Partners

University of Zurich (UZH), Switzerland
SWITCH (SWITCH), Switzerland
ETH zirich (ETHZ), Switzerland

© Copyright 2011 the Members of the AMAAIS Project

For more information on this document or the AMAAIS project, please contact:

Martin Waldburger

University of Zirich

Department of Informatics (IFI)
Communication Systems Group (CSG)
Binzmuhlestr. 14

CH-8050 zrich

Switzerland

Phone: +41 44 635 4304
Fax: +41 44 635 6809
E-mail: waldburger@ifi.uzh.ch

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Pagel

AMAAIS Project Phase 2

Deliverable D2

Public

Document Control

Title: AMAAIS Phase 2: Architecture Design and Implementation
Type: Public
Editor(s): Guilherme Sperb Machado
E-mail: machado@ifi.uzh.ch
Author(s): Guilherme Sperb Machado, Patrik Schnellmann, Matteo Corti,
Martin Waldburger, Andrei Vancea, Burkhard Stiller
Doc ID: D2
Delivery Date: 31.01.2011
AMENDMENT HISTORY
| Version | Date | Author | Description/Comments \

0.1 2010-01-22 | P. Racz Template created and document structure in-
cluded.

0.2 2010-02-01 | G. Machado First version of client APl and a draft of the ac-
counting protocol included.

0.3 2010-03-31 | P. Racz Architecture and interface description updated.
Accounting client APl updated. System deploy-
ment overview included.

0.4 2010-11-03 | G. Machado Document outline. Provided details in the Ar-
chitecture and interface description. Account-
ing client API updated.

0.5 2010-12-20 | G. Machado Many modifications in the document outline.
Wrote content in different sections, and in-
cluded figures.

0.6 2010-12-27 | P. Schnellmann | Content in visualization component section.

0.7 2011-01-26 | G. Machado Content in the ASPEAR and Deployment sec-
tions.

0.8 2011-01-28 | M. Corti Review, comments, and madifications in the
document as a whole.

0.9 2011-01-29 | G. Machado Content in the Collector Guidelines section, and
some corrections.

1.0 2011-01-31 | G. Machado Final Version

Legal Notices

The information in this document is subject to change without notice.

The Members of the AMAAIS Project make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the AMAAIS Project shall not be held liable for errors contained herein
or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Version 1.0

© Copyright 2011 the Members of the AMAAIS Project

Page ii

AMAAIS Project Phase 2 Public

Deliverable D2

Contents
1 Executive Summary 1
2 Introduction 2
3 Architecture Design 4
3.1 Architecture Overview e 4
3.2 System Deployment—Organizational Recommendation 5
3.3 Interfaces 6
3.3.1 Interfacei-idp-1. 7
3.3.2 Interface i-sp-1 e 8
3.3.3 Interface i-print-1 8
3.3.4 Interfacei-sms-1 8
3.3.5 Interfacei-acctc-1 8
3.3.6 Interfacei-accts-1 9
3.4 Accounting Process 10
4 Common Accounting Information Model 11
5 AMAAIS Deployment 13
5.1 PrerequisiteS e 13
5.2 Obtaining AMAAIS 14
5.3 Installation and Configuration, 14
5.3.1 Unpacking 14
5.3.2 Executing 15
5.3.3 ConfigurationFiles 15
6 Collector Guidelines 19
6.1 Extendingthe Collectorclass 19
6.2 Using the ParsingLogController Util 21
6.3 Generating Accounting Sessionsand Records 22
6.4 Notes on the Integration with the Accounting Client 23
6.5 BuildingaDaemon 23
Version 1.0 Page iii

© Copyright 2011 the Members of the AMAAIS Project

AMAAIS Project Phase 2 Deliverable D2

Public

7 Implementation Documentation 26
7.1 AMAAIS SAML-based Protocol for Exchanging Accounting Records (AS-

PEAR) . . . e 26

7.1.1 ASPEAR as a SAML Protocol Extension 26

7.1.2 ProtocolMessages 26

7.1.2.1 AccountingRequest, 27

7.1.2.2 AccountingResponse 28

7.1.3 Protocol Class Diagram 29

7.1.4 Protocol Sequence Diagram 30

7.1.5 |Interface /APl 31

7.2 Collector. 31

7.21 Interfaces 31

7.2.2 Component Architecture 31

7.3 Accounting Client 32

7.3.1 Interfaces 32

7.3.2 Component Architecture 33

7.4 Accounting SErver e 33

741 Interfaces 33

7.4.2 Component Architecture 34

7.4.3 Component Behavior 34

7.5 AccountingDatabase 34

751 Interfaces 35

7.5.2 Component Architecture 35

753 DataModel 36

7.6 Visualization Component e 36

7.6.1 Evaluation of the visualization software 36

7.6.2 Eclipse BIRT e 37

7.6.2.1 Functionality 37

7.6.3 Installation and Configuration 38

7.6.3.1 ReportDesigner 38

7.6.3.2 Viewer web application 38

7.6.4 Examplereport e 38

7.6.4.1 Datasource 38

7.6.4.2 Dataset 39

7643 Chart e 39

7.6.4.4 Reportoutput 40

Version 1.0 Page iv

© Copyright 2011 the Members of the AMAAIS Project

AMAAIS Project Phase 2 . Deliverable D2
Public

8 Summary and Conclusions 41
Terminology 42
Acknowledgement 43
References 43
Version 1.0 Page v

© Copyright 2011 the Members of the AMAAIS Project

AMAAIS Project Phase 2 . Deliverable D2
Public

1 Executive Summary

The goal of the AMAAIS (Accounting and Monitoring of AAI Services) project—a col-
laboration between the Communications System Group (CSG) at UZH, SWITCH, and
ETHZ—is to extend the current Authentication and Authorization Infrastructure (AAI) with
accounting and monitoring support, enabling inter-domain accounting and the manage-
ment of the AAIL. The AMAAIS project is structured into project phases. Phase 1 [1] was
centered at collecting use case scenarios, requirements, and the construction of a high-
level architecture. This documents, which describes the results of Phase 2, is focused on
the fine design of the architecture, the implementation of the accounting and monitoring
architecture, and its deployment.

Phase 2 targets any kind of users (from large educational institutions or private organiza-
tions, to small-medium corporations) that already has a Shibboleth-based AAI infrastruc-
ture and wants to enable accounting and monitoring. Moreover, this document is mainly
interesting for users that want to deploy the AMAAIS project, understanding the technical
prerequisites, the limitations, and the underlying technical implementation (e.g., interfaces,
possible extensions).

Accordingly, this deliverable contains the following sections. Section 3 describing the
AMAAIS architecture and design, Section 4 presenting the common concepts, Section
5 describing the project’s deployment, Section 6 that explains how to extend AMAAIS for
other service-dependent scenarios, and Section 7 that explicits implementation details.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 1

AMAAIS Project Phase 2 . Deliverable D2
Public

2 Introduction

A Shibboleth-based Authentication and Authorization Infrastructure (AAl) enables users
to access different web resources in a common manner by providing a single-sign-on
interface for login. The AAI makes use of the Federated Identity Management concept
that allows the use of a single user identity for different services beyond the user's home
institution domain. Such characteristic plays an important integration and organizational
aspect for institutions: it not only eases the users’ access to resources, but also makes the
management process more convenient. Pfitzmann et al. [2] provides a comprehensive
overview of available federated identity approaches and protocols. Within the scope of
the AMAAIS project (Accounting and Monitoring of AAl Services) [3], Shibboleth is used
and the considered type of federation includes primarily institutions of higher education
in Switzerland, among others. Shibboleth is based on the Security Assertion Markup
Language (SAML) [4]. It is open source software and builds on OpenSAML [5], an open
source implementation of SAML.

The goal of the AMAAIS project—a collaboration between the Communications System
Group (CSG) at UZH, SWITCH, and ETHZ—is to extend the current Shibboleth-based
AAl with accounting and monitoring support, enabling inter-domain accounting and the
management of the AAI. During 2009, the AMAAIS project ran the Phase 1. The results
of AMAAIS Phase 1 are published in the Deliverable 1 [1] which was primarily concerned
with service-independent accounting and monitoring (e.g., Service Provider and ldentity
Provider), as well as with service-dependent scenarios (e.g., SMS and Printing services)
and the composition of a high-level architecture to rely on. This document describes the
results of Phase 2 completed in 2010.

Phase 2 was mainly focused on the refinement of the architecture and the implementa-
tion of the architectural components. Within the architectural scope, one key aspect is the
importance of well-defined interfaces between components to enable previously defined
requirements on Phase 1 (e.g., extensibility and reliability). The main achievement related
to interfaces is the successful development of ASPEAR (AMAAIS SAML-based Protocol to
Exchange Accounting Records), which extends messages from SAML (using the consol-
idated and reliable library OpenSAML) to transfer accounting information between client
and servers. The protocol was also designed to be extensible, meaning that other types of
messages can be created and easily attached. Within the implementation of components
scope, it is plausible to highlight the AMAAIS organization to enable the extension of other
service-dependent components. For example, the current implementation enables users
to write their own Collector (e.g., a “log parser”) in order to account resource usage of a
given resource. This is possible due to (1) an API (Application Programming Interface) at
the Accounting Client side, and (2) a parsing controller that ease the process of parsing
log files—which are the most common method to meter resources. Another implementa-
tion key point is the range of configuration parameters that can be adjusted: number of
retransmission attempts in case of server’s reachability problem, buffer size of accounting
records (at the client side), log rotation capabilities, local database (at the client side),
rules/policies to forward accounting records to other servers, etc.

Therefore, the main goal of the AMAAIS project Phase 2 deliverable is to explicit the tech-
nical implementation details and to show how users can benefit from it, demonstrating

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 2

AMAAIS Project Phase 2 . Deliverable D2
Public

how to deploy or even extend project’'s components. The document is organized as fol-
lows. Section 3 presents the accounting and monitoring architecture with its components.
Section 4 shows some concepts that are commonly used by the various components of
the architecture. Section 5 explains how to deploy the AMAAIS project. Section 6 ex-
plores the AMAAIS extensibility, explaining how developers can build their own Collector
component. Section 7 presents the implementation details, e.g., UML diagrams, protocol’s
sequence messages between components and database tables. Finally, Section 8 gives
a brief conclusion about the project as a whole.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 3

AMAAIS Project Phase 2 . Deliverable D2
Public

3 Architecture Design

3.1 Architecture Overview

Figure 1 shows the AMAAIS architecture with its components and interfaces. The figure
includes the components and interfaces required for the accounting of the AAI infrastruc-
ture, i.e., ldentity Provider (IdP), Service Provider (SP), as well as of the printing service
and the SMS service. Further details about the printing and SMS scenarios can be found
in [6]. Additional services can be easily integrated into the architecture by defining new

service-specific Meter and Collector components. This will be described in more detail in
Section 6.

IdP Meter SP Meter g Printing Meter g SMS Meter

i-idp-1 i-sp-1 i-print-1 i-sms-1

g IdP Collector SP Collector g Printing Collector g SMS Collector

i-acctC-1

g Accounting Client

i-acct5-1
g Accounting Server

Figure 1: Architecture.

The Meter component is responsible for gathering information about events and service
consumption of the AAI and of AAl-enabled services. The Meter component is specific to
the AAI component and service for which it collects metering information. Therefore, there
are specific Meter components for the IdP (IdP Meter), for the SP (SP Meter), and for the
different services (Printing Meter and SMS Meter). The Meter component is usually an
integrated part of the system/service that it meters, e.g., in the first version of AMAAIS the
IdP and SP Meters are the built-in loggers of Shibboleth (for organizational deployment de-

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 4

AMAAIS Project Phase 2 . Deliverable D2
Public

tails see Section 3.2). Meters generate service-specific metering information (e.g., number
of pages printed) which is received and processed by the Collector component specific to
the AAI component and service.

Similar to the Meters, there are Collector components for the IdP (IdP Collector), for the
SP (SP Collector), and for the different services (Printing Collector and SMS Collector).
There can be different implementations of the Collectors depending on the Meters, e.g.,
a Collector can be a log file parser if the Meter is a text logger. Collectors process the
data received from the Meters and make them available for the Accounting Client in the
form of accounting records. The Accounting Client sends these records to the Accounting
Server using the ASPEAR accounting protocol (cf. Section 7.1), which specifies a com-
mon interface towards the Accounting Server. The Accounting Client provides a common
interface to the different Collectors and it is the same for the IdP, SP, and any service. The
Accounting Server is a central component of the architecture and is responsible for receiv-
ing accounting records from clients and store them in a local database. Additionally, an
Accounting Server can forward records to another Accounting Server, while some of the
attributes in the records might be filtered or changed depending on the accounting policy
between the two servers/domains.

3.2 System Deployment—Organizational Recommendation

A possible deployment of the architecture components is shown in Figure 2. There are
different organizational ways of deploying AMAAIS, because e.g., some of the components
might run on the same physical host or different database servers can be used for the
accounting database. The project was designed to be aware of IT architectural variations
and different necessities of organizing its physical resources.

As illustrated in Figure 2, the Accounting Server component is deployed on a separate
physical machine and it uses a PostgreSQL database server for the accounting database
(other database servers are also possible as detailed in Section 7.5). The Accounting
Server runs as a Java Servlet web application in a Java-Webserver, like Apache Tomcat.
In the example, the IdP, SP, Printing, and SMS components are running on separated
physical machines. However, some of them might be deployed on the same physical
machine or also in different virtual machines.

In AMAAIS v1.0 the IdP Meter is the standard logger of the Shibboleth IdP implementa-
tion, and the SP Meter is the standard logger of the Shibboleth SP implementation (shibd
daemon). The Printing Meter is specific to the printing solution (VPP) deployed at ETHZ
[7] and it is the logger of the print server (VPP logger). The SMS Meter is also specific to
the SMS service at ETHZ [8], but in this case it is not a logger, but a database that stores
all usage from the SMS web gateway in a structured manner. In AMAAIS v1.0 the different
Collectors (IdP, SP, Printing, SMS) are integrated with the Accounting Client components
and they run as a single process (daemon) on each machine where a Meter is deployed.
More than one Collector might be integrated with the Accounting Client in a single daemon
if required, e.g., if there are several services running on a machine, the Collectors of each
of these services can run in a single daemon.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 5

AMAAIS Project Phase 2 Deliverable D2

Public
1dP Machine SP Machine Print Server Machine 5MS Gateway Machine
= I=——1 =y 1
Shibboleth IdP Shibboleth SP Print Server SMS Weh Gateway
IoP Meter SP Meter Print Meter SMS Meter
1 [—— [I— 1
1dP Accounting 5P Accounting Printing Accounting SMS Accounting
IdP Collector SP Collector Printing Collectar SMS Collector
Accounting Client Accounting Client Accounting Client Accounting Client
Local Datsbase Local Database Local Database Local Database

Accounting Server Machine

| /’

Accounting Server

U

Server Database

Figure 2: System deployment.

3.3 Interfaces

Table 1 lists and summarizes all interfaces of the AMAAIS architecture, while the following
sections give an overview on each interface separately.

The interfaces between Meter and Collector components are specific to the metered ser-
vice and can be implemented in different ways, e.g., based on log files, an API, or socket
communication, which can also differ between service. In the AMAAIS system v1.0 the
interface between Meters and Collectors is based on log files for most of components,
i.e., the IdP and SP Collector uses the standard Shibboleth log files, and the Printing
Collector uses the log file of the print server. Using log files enables the integration of
accounting into an existing AAI environment without requiring any changes in the Shibbo-
leth implementation and installation. In a later release this interface might be changed if
required, without modifying the Accounting Client and Accounting Server part. However,
as presented before, the SMS Collector establish a database connection to fetch the data
related to the usage of the SMS web interface (Shibboleth). In this case, the meter itself
is an application that populates a database each time the resource is used.

The interface between Collectors and the Accounting Client is an API in AMAAIS v1.0.
This can be adapted to another type of interface, e.g., socket-based communication, if
future services requires that. Since the Collectors hide any service-specific interfaces from
the Accounting Client, the architecture can integrate any future service without modifying

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 6

AMAAIS Project Phase 2

Public

Deliverable D2

Table 1: Interfaces of AMAAIS v1.0.

Interface | Component Component Description Type/Protocol
ID providing the using the
interface interface
i-idp-1 IdP Collector | IdP Meter To send IdP-related metering | File based, using
data to the collector. Shibboleth IdP log
files
i-sp-1 SP Collector SP Meter To send SP-related metering | File based, using
data to the collector. Shibboleth SP log files
i-print-1 Printing Col- | Printing Meter | To send metering data about | File based, using log
lector print jobs to the collector. files of the print server
i-sms-1 SMS Collec- | SMS Meter To send SMS-related meter- | Database based, us-
tor ing data to the collector. ing log information of
the SMS web interface
i-acctc-1 | Accounting Collectors To create and terminate ac- | Java API
Client counting sessions, to create
accounting records, and to
send accounting records to
the server.
i-accts-1 | Accounting Accounting To send/forward accounting | Based on ASPEAR
Server Client and | records to a server. Both
Server the client and the server can
use this interface to send ac-
counting records to a server.

the core components of the architecture which are the Accounting Client and Server. The
interface between the Accounting Client and Server is based on the ASPEAR protocol (cf.
Section 7.1) that determines a common interface used for the AAI components and for
all services to communicate with the Accounting Server. The ASPEAR protocol is also
used between Accounting Servers. For further details about the interactions over these
interfaces during the accounting process see also Section 3.4.

3.3.1 Interface i-idp-1

The i-idp-1 interface is specified between the IdP Meter and the IdP Collector and it is
used to send metering data related to IdP events, e.g., authentication events and attribute
release events, to the IdP Collector. In AMAAIS v1.0 this interface is based on the Shib-
boleth IdP log files idp-access.log and idp-audit.log. The standard log level is needed by
AMAAIS v1.0. Details about the Shibboleth IdP logging features can be found in [6] and

9.

To use the standard Shibboleth log files has the advantage that the accounting functional-
ity can be deployed without changing the Shibboleth implementation and installation. This
is a desired feature especially for the integration of accounting in a trial phase. However,
using the standard log files has some drawbacks as well, since some accounting-relevant
information might not be available in current log files, some loggers might require more
verbose log levels (debug), and the parsing of large log files determines additional over-
head. Therefore, in a later release the Shibboleth logging feature might be adjusted to

Version 1.0 Page 7

© Copyright 2011 the Members of the AMAAIS Project

AMAAIS Project Phase 2 . Deliverable D2
Public

specifically consider accounting-relevant log messages and to define a separate logger
and log file for accounting purposes. This would allow the separation of the accounting
functionality and the generic Shibboleth logging, the logging for accounting could be con-
figured separately, and the accounting-related log messages could be better customized
to the accounting needs (i.e., to log information relevant for accounting which is not avail-
able in current log file or only available in higher log levels, resulting in larger log files and
parsing overhead). This observation also applies for the i-sp-1 and i-ds-1 interfaces.

3.3.2 Interface i-sp-1

The i-sp-1 interface is specified between the SP Meter and the SP Collector and it is used
to send metering data related to SP events, e.g., authorization events, to the SP Collector.
In AMAAIS v1.0 this interface is based on the Shibboleth SP log files native.log, shibd.log,
and transaction.log. The standard log level is needed by AMAAIS v1.0. Details about the
Shibboleth SP logging features can be found in [6].

3.3.3 Interface i-print-1

The i-print-1 interface is specified between the Printing Meter and the Printing Collector
and it is used to send metering data related to print jobs, e.g., number of pages printed
and printer type, to the Printing Collector. In AMAAIS v1.0 this interface is specific to the
printing solution (VPP) deployed at ETHZ [7] and it is based on the log files of the print
server (VPP logger). In a later release additional interfaces can be added (i.e., i-print-2)
that support additional, different printing solutions.

3.3.4 Interface i-sms-1

The i-sms-1 interface is specified between the SMS Meter and the SMS Collector and it is
used to send metering data related to the SMS service, e.g., number of SMS sent, to the
SMS Collector. In AMAAIS v1.0 this interface is specific to the SMS Gateway deployed at
ETHZ [8] and it is based on a database that meters the SMS web interface.

3.3.5 Interface i-acctc-1

The i-acctc-1 interface is specified between the Collectors (IdP, SP, and services) and the
Accounting Client and it is a common interface for all type of Collectors to create and
terminate accounting sessions and to send accounting records to the Accounting Server.
In AMAAIS v1.0 this interface is based on an Java API. The details of the API are described
in Section 7.3.1. In a later release additional interfaces can be added (i.e., i-acctc-2) to
adapt the interface to another type, e.g., to a socket-based communication if the Collector
is implemented in another language than Java. This will allow to integrate any future
services or extensions into the architecture.

The i-acctc-1 interface provides in general the functions listed below (for details see Sec-
tion 7.3.1). These functions have to be supported by any possible future interface of the

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 8

AMAAIS Project Phase 2 . Deliverable D2
Public

IMeter Colleckor feck. Client fcck, Server Acct. DB

sd loop] E sd loop) i

i Writie eveﬂts ko log filed) 2 1 Read iand p%rse I File)
= C:reate acch, record()

seq ORE /I

T 4 startAcctSession() !

e e e e

70K '
&1 SenddcctRecord) oo]]
i 9 LRARL 10 : Stare acek, record() !
——————————————— 11: 0K
T ——— ;
13 0K 120k

i 14 ; StopécctSession()
>

m—

Figure 3: Accounting process

Accounting Client, irrespective of the communication type (e.g., API, socket) of the new
interface.

e Create new accounting sessions.
e Terminate existing accounting sessions.

e Assign accounting records to existing accounting sessions.

3.3.6 Interface i-accts-1

The i-accts-1 interface is specified between the Accounting Client and the Accounting
Server as well as between Accounting Servers (within the same domain or in different
domains). This interface is used to send accounting records to the Accounting Server
and it is based on the ASPEAR protocol (see Section 7.1). Accounting records can be
sent either by Accounting Clients or by Accounting Servers (servers can forward account-
ing records to other servers depending on their accounting policy). The interface is a
common interface used to transfer accounting records of any type of service. Thus, the
interface/protocol can accommodate the accounting for any future service without need to
be changed.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 9

AMAAIS Project Phase 2 . Deliverable D2
Public

3.4 Accounting Process

Figure 3 shows the general steps of the accounting process. Since the Meters are built-
in loggers of different components, they run separately from the other components and
continuously write log messages into their corresponding log files. These log files are
read and parsed by the corresponding Collectors and in case there is an event relevant for
accounting (e.g., a print job is finished) the Collector creates a new accounting record that
contains all relevant information of the event (e.g., the user who printed and the number
of pages printed). If there is no existing accounting session associated with the service,
the Collector creates a new accounting session otherwise the Collector assigns the new
accounting record to the existing session and sends the record via the Accounting Client
to the Accounting Server. The record is sent using the ASPEAR protocol to the Server,
where it is stored in the accounting database. If the service’s metering is finished and
all related accounting records have been sent to the Server, the Collector terminates the
accounting session. It is important to note something implicit in the figure: in AMAAIS
v1.0 the Accounting Client holds a local database to store accounting information if the
server cannot be reached in the moment. More information about the local database
configuration settings can be found in Section 5.3.3.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 10

AMAAIS Project Phase 2 . Deliverable D2
Public

4 Common Accounting Information Model

Before explaining the deployment and implementation details related to the AMAAIS
project, it is important to explicit some common concepts among architectural compo-
nents. The AMAAIS Common Accounting Information Model is strongly based on con-
cepts from OGF recommendations, as well as based on RFCs (Request for Comments)
2866 [10] and 3588 [11].

Figure 4 depicts the model. The top-level class is called “Accounting Session”, which
represents a period of time devoted to perform a certain activity. A session can handle
multiple activities, or none. For example, a session can be represented by a period of time
in which a given user used a Web service. During his Web session, many activities can
be performed, and therefore should be monitored and accounted properly. The session
definition is meant to be a generic concept to group many accounted activities.

The aforementioned “activities” that an “Accounting Session” can handle are represented
by the “Accounting Record” class. Following the previous example, a user begins to inter-
act with a Web service in order to watch a video. During his session—besides the video
streaming—another activity can occur as the user could comment the video with some
text. Both activities are monitored by the system and translated to Accounting Records. To
have a more concrete vision about records, in the scope of this example, the system can
generate an Accounting Record related to the attribute “comment” (usually represented
by an unique identifier), carrying the value “54"—which can be the number of characters
written by the user. Moreover, the system can generate multiple Accounting Records re-
lated to the bandwidth usage to stream the video. All these Accounting Records should be
linked to an Accounting Session in order to associate a service to it (“servicelD”) and give
timing dimensions (“startTime” and “endTime”). The Accounting Session should also have
an “accounting client” identifier, which is the Accounting Client daemon that generated the
session. The Accounting Record must contain a “timestamp” which is the exact time that
the record was generated. Since multiple records can be associated to the same session,
a “recordNumber” becomes necessary.

Following the previous example, the attribute “comment” is represented by the “AcctAt-
tribute” class. In fact, an Accounting Attribute should be represented with a specific type,
depending on each attribute’s data value type. In the case of the attribute “comment”, the
data type should be an integer (humber of characters written by a given user). Since the
class “AcctAttribute” is just an interface, the concrete class to be instantiated is the “AcctAt-
trString”. Note that an Accounting Record can also have an “AcctAttrGrouped” class that
represents an Accounting Attribute, but containing many other attributes from the same
nature. A typical example is a grouped attribute related to “memory” with sub-attributes as
“RAM-Memory”, “Virtual-Memory”, etc.

It is important to note that sessions can also represent events. For example, if the Meter
of a printing service just monitors events like “a job was printed using colors, on a A3
page and the duplex option”, the Accounting Session will have the same “startTime” and
“endTime”. Ifitis available, the Meter can provide the time when the printer started printing
and the moment when the job was finished. In the case of well-defined start and end times,
the metered entry (in the Meter component) characterizes as being a session, having
some activities during such period related to a given service. However, when this kind of

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 11

AMAAIS Project Phase 2

Public

Deliverable D2

AcctSession

-sessionID: Siring
-acchClient: String
-servicelD: String
-startTime: Date
-endTime; Date
-eventTimeStamp: Date

-records: ArrayList<AcciRecord>

+setSessionlDiSring) : void
+getSessionID(): String
+eethcctClientiString): void
+getacctClisnt(): String
+setServicelD(String): void
+getServicelD(): String
+eetStartTimaCate): void
+getStartTime(): Date
+setEndTime{Date): void
+getEndTime(): Datz

+setEventTimeStamp(Date): void

AcctRecord

-recordiumber: int
-timestamp: Date
~affributes ArrayList<Acctatributes

+eetRecordMurmber(nt): void
+getRecordiumber (): int
+etTimeStarnpiDate): void
+getTimeStamp(): Date

+getatiributes(): Arraylist<Acctatiribute>
+eetattributes(arrayList<Acctatl butes: void
+addatiribute (acctatiribute): void
+getatiribute(int): Acctatiribute
+gethumberofaty butes): int

+getEventTimeStarnp): Date
+addRecordigoctRecord): void
+addRecords{arrayList<AcctRecord=): void

1

*

+elearRecords(): void

+getRecords(y: Arraylist<AcciRecords

AcctAttrDate

-value: Date

+eetvalueiData): void

+getvalue(): Date

AcctAttrstring

-value: String

+eEtvalus(String): void
+getvaluel): String

AcctAttrinteger

~valug: Integer

+setalue(Integer): void
+getvalued): Integer

+getCID): String
+set0ID(String): void

7

AcctAttribute

-0ID: String

AcctAttrGrouped

~value: Arraylist=aAcctatiributes

AcctAttrDouble

AcctAttrBoolean

-valug: Double

-value: Boolean

+eetvalue (Double): void
+getvalued): Double

+eetvalueiBoolean): void
+getvalue): Boolean

+getvaluedy: ArrayList<acctatributes
+addatiribute (AcctatrDate): void
+addatiribute (AcctatirDouble): void
+addatiribute (Acctatirintegery: void
+addatiribute (AcctatirString): void
+addatiribute (AcctatirBoolean): void
+addatiribute AcctatrGrouped): void

Figure 4: Common Accounting Information Model for AMAAIS components

information is not available, being represented just as a “file that was printed” at a given
time (i.e., a high granularity of information), the session concept should be adapted to

represent such event.
Better described on Section 7, the AMAAIS implementation is strongly based on this

model. Moreover, developers that aim to build service-dependent accounting solutions—
by developing AMAAIS Collectors—should follow to the definitions presented in this sec-

tion.

Version 1.0

© Copyright 2011 the Members of the AMAAIS Project

Page 12

AMAAIS Project Phase 2 . Deliverable D2
Public

5 AMAAIS Deployment

This section covers how to deploy the implemented prototype. The steps on how to install,
execute, and configure will be based on a Linux environment. Windows is supported but
Linux was chosen since it is the reference implementation and tests with Windows will
occur in a later stage only.

5.1 Prerequisites

At the moment of the deliverable conclusion, the prototype was only tested under Linux.
It is therefore strongly recommended that the system runs under Linux (at least version
2.6.30).

The AMAAIS system was tested using different distributions (Red Hat Enterprise edition,
Ubuntu, Gentoo), it is recommended that the machines that will host Collectors/Account-
ing Clients and Accounting Servers run in a minimal configuration. It means that, since
AMAAIS daemons are constantly running and requiring CPU to parse reasonably amount
of data, it is recommended that just the necessary packages are installed in the opera-
tional system.

Except those essential packages that comes with typical Linux distributions, the following
Java libraries are strictly required to run the AMAAIS system as a whole:

http—client —4.0.1. jar
http—core —4.0.1. jar

jdom. jar

jnotify —0.93.jar
servlet—api.jar

xalan —2.7.1. jar

xerceslmpl —-2.7.1. jar
xml—apis —2.9.1. jar
resolver —2.9.1. jar
serializer —2.9.1. jar
bcprov—ext—jdk15 —1.40.jar
commons—codec —1.3. jar
commons—collections —3.1. jar
commons—httpclient —3.1.jar
commons—lang —2.1.jar

jargs —1.0.jar
jcip—annotations —1.0. jar
jcl —over—slf4j —1.5.5. jar
joda—time —1.5.2. jar
log4j—over—slf4j —1.5.5. jar
not—yet—commons—ssl —0.3.9. jar
opensaml—2.2.3. jar
openws—1.2.2.jar

slf4j—api —1.5.6.jar

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 13

AMAAIS Project Phase 2 . Deliverable D2
Public

slf4j—jdk14 —1.5.6. jar
slf4j—nop—1.5.6.jar
velocity —1.5.jar

xmlsec —1.4.2. jar

xmltooling —1.2.0. jar
postgresql —9.0—801.jdbc3. jar
db40-7.12.156.14667 — all —java5. jar
log4j —1.2.16.jar

hsqldb . jar

slf4j—api —1.5.8. jar
slf4j—log4jl12 —1.5.10.jar
jta—1.1.jar

javassist —3.9.0.GA. jar
hibernate3. jar

hibernate —tools . jar
freemarker. jar
dom4j—-1.6.1. jar
commons—-logging —1.1.1. jar
commons—collections —3.1. jar
c3p0—-0.9.1. jar

antlr —2.7.6. jar

Besides these Java libraries, the Accounting Server machine must have Apache Tomcat
up and running as the Accounting Server runs as a servlet (the Accounting Server should
run on any Java Servlet Container bu was tested on Tomcat only). Since the Server is a
Webservice the Tomcat running port should not be blocked by a firewall.

5.2 Obtaining AMAAIS

The AMAAIS software can be obtained at http://amaais.switch.ch, at the Download section
and is released under the Apache2 license.

5.3 Installation and Configuration

Basically, the AMAAIS software package is one piece of software that can be separately
installed depending on how the organizational system deployment is organized. In the fol-

lowing subsections we describe the unpacking, installation and configuration with a typical
example (see Section 3.2).

5.3.1 Unpacking

The user should unpack the software using the following command:

tar -xvzf amaais-vl.2.tar.gz

Version 1.0 Page 14

© Copyright 2011 the Members of the AMAAIS Project

N o o0 0~ W N P

AMAAIS Project Phase 2 . Deliverable D2
Public

Once executed, this command will result in three distinct directories:

amaais—client —SP
amaais—client —IdP
amaais—server

The “amaais-client-SP” directory contains all the files related to Collectors and the Ac-
counting Client for the Service Provider, the “amaais-client-ldP” directory contains all the
files for the Identity Provider and “amaais-server” contains the required files to deploy the
Accounting Server.

5.3.2 Executing

The SP and IdP Accounting Client and Collector can be executed as it follows:

java -jar amaais-client-SP.jar
java —-jar amaais-client-IdP.jar

Note that the Accounting Client prints a lot of information to the standard output (which is,
most of cases, the terminal). To avoid this, it is recommended to redirect the output to a
temporary file. Moreover, before executing the JAR files for the first time it is recommended
to tune the configuration settings as explained in Section 5.3.3.

The Accounting Server is packaged in the “amaais-server.war” file in the “amaais-server”
directory and has to be deployed using Tomcat. Note that all the libraries distributed under
the server directory should be placed at the appropriate Tomcat folder. Consult the Apache
Tomcat website! for further information.

5.3.3 Configuration Files

The AMAAIS software has three configuration files that is recommended to be prop-
erly tuned depending on users’ needs. Actually, due to the distribution of the service-
independent part (IdP and SP), the AMAAIS system should be configured in 2 files:
amaais-client-SP.conf and amaais-client-ldP.conf.

Since each Collector has its own Accounting Client, the configuration file for the client
daemon will contain Collector information as well. Therefore, the amaais-client-IdP.conf
looks like as the configuration on Listing 1.

Listing 1: amaais-client-ldP.conf

acctclient.identity = acctclient.ethz.ch
acctclient.server =
http :// acct—server.ethz.ch:8080/amaais/acctserver
acctclient.localdb = /path/to/local.db
acctclient . buffersize =1
acctclient.retransmissions = 2

 http://tomcat.apache.org

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

AMAAIS Project Phase 2

Deliverable D2

Public
collector.keypath = /path/to/keys
collector.idp.logfile.idp—access.name = idp—access.log
collector.idp.logfile.idp—audit.name = idp—audit.log
collector.idp.logfile.idp—process.name = idp—process.log
collector.idp.logfile .idp—access.path =
collectors/aai/test/testlogfiles/idp/
collector.idp.logfile.idp—audit.path =
collectors/aai/test/testlogfiles/idp/
collector.idp.logfile .idp—process.path =
collectors/aai/test/testlogfiles/idp/
collector.idp.logfile.idp—access.rotation.pattern =
idp—access—%yyyy—%mm-%dd. log
collector.idp.logfile.idp—audit.rotation. pattern =
idp—audit—%yyyy—%mm-%dd. log
collector.idp.logfile.idp—process.rotation. pattern =
idp—process—%yyyy—%mm-%udd . log
collector.idp.logfile.idp—access.rotation.mode = archival_static
collector.idp.logfile.idp—audit.rotation.mode = archival_static
collector.idp.logfile .idp—process.rotation.mode = archival_static

The first element of the configuration parameters represent AMAAIS that the settings will
be set to. In the example above, there is configuration related to the Accounting Client
(“acctclient”) and Collector (“collector”).

For the client (“acctclient”) it is necessary to set:

¢ the identity of the Accounting Client (“acctclient.identity”), which is an identifier (URL)

used to globally identify the given Accounting Client.

the Accounting Server that the client will send the Accounting data to (“acct-
client.server”). Note that users can specify more than one Accounting Server using
commas. Therefore, each time that the Accounting Client has something to send, it
will be sent to all the specified Servers. This mechanism can be used as a backup
mechanism as well, since multiple “mirrored” Accounting Servers can be set. How-
ever, this approach can have a high impact on the used bandwidth.

the local database file (“acctclient.localdb”), which stores some Accounting data will
be stored in case of server's unavailability or any other unexpected error. The size
of the database should not grow significantly (only in case of low server availability).

the Accounting Client’s buffer size (“acctclient.buffersize”), which is the maximum
buffer size (in number of records) until the Accounting Client sends the Accounting
data to the configured Servers. This can be optimized/tunned depending on how
reliable users want its Accounting System. If the value is set to “1” (low value), for
example, it means that every time that the Accounting Client has a new Accounting
Session/Record to be sent, it will not wait for big period of time until the data gets
persisted. On the other hand, if the value is set to more than “10”, the Accounting
Client may wait longer to send the Accounting data to the Server and gets the positive
answer that it was persisted.

Version 1.0

© Copyright 2011 the Members of the AMAAIS Project Page 16

© oo N o g 9~ w N P

I e =
w N P O

[N
i

AMAAIS Project Phase 2 . Deliverable D2
Public

e the number of retransmissions retries (“acctclient.retransmissions”), which is the
number of times that the Accounting Client will try until giving up and store the Ac-
counting data in the local database. Note that it is not possible to configure/tune the
interval set between retransmissions, as well as how long an Accounting Record will
remain at the local database.

For the Collector (“colletor”) it is necessary to set:

e Key path (collector.keypath) is the directory where the “ParsingLogController” tool
stores the files that controls how much of data was sent/forwarded to the Accounting
Client.

e Rotation Mode (collector.*.logfilename.*.rotation.mode), can be set as:
“archival_static’, meaning that log files rotate by date, in a static manner (ex-
ample: testlog to test_ 20101227.log), or “archival_dynamic”, meaning that files
rotate given an index, and keep rotating by a date/file size (example: test.log to
test.log.1 and test.log.1 to test.log.2, etc).

e Logfilename (collector.*.logfilename): specify the absolute path of the log file. Note
that a collector can have more than one log filename, if it has to parse more than
one source. In the case above, the IdP collector has “idp-access”, “idp-audit”, and
“idp-process” to parse.

e Rotation Pattern (collector.*.logfilename.*.rotation.pattern): specify what is the pat-
tern followed by the log rotation. Standardized values to be used: %yyyy = year, in
four decimal digits, %mm = month, in two decimal digits, %dd = day, in two decimal
digits, %i = index, usually used in the “archival_dynamic” rotation mode, which %i
represents one decimal digit.

At the Accounting Server side it is possible to configure the forwarding policies: a set of
rules that the Accounting Server will evaluate to release Accounting Attributes to other
Accounting Servers. An example of such configuration file is showed on Listing 2. The
configuration file is XML-based and is called “attribute-filter-policy.xml”.

Listing 2: attribute-filter-policy.xml

<AttributeFilterPolicy id="forwardToAcctServerExample”>

<l—— Policy requirement rule that indicates this policy
is only used to forward attributes to the following
Accounting Server:

http :// acctclient.ethz.ch/amaais/acctserver —>

<PolicyRequirementRule
Xsi:type="basic: AttributeForwardingRule”
value="http :// acctclient.ethz.ch/amaais/acctserver”/>

<l—— Attribute rule for the email attribute —>
<AttributeRule attributelD ="email”>
<l— Permit value rule that releases any value. —>
Version 1.0 Page 17

© Copyright 2011 the Members of the AMAAIS Project

15

16

17

18

19

20

21

22

23

AMAAIS Project Phase 2 . Deliverable D2
Public

<PermitValueRule xsi:type="basic:ANY" />
</AttributeRule >

<AttributeRule attributelD ="userName”>
<l—— Permit value rule that releases any value. —>
<PermitValueRule xsi:type="basic:ANY" />
</AttributeRule >

</AttributeFilterPolicy >

The XML element “AttributeFilterPolicy” specifies one policy. The element must
contain the “PolicyRequirementRule” element which type should always be *“ba-
sic:AttributeForwardingRule”. It means that it is an Attribute Forwarding Rule, and there-
fore the Server can evaluate if such configuration file has the purpose that was originally
designed to. The “AttributeRule” element can appear multiple times, depending on how
many attributes it is desired to release/forward. Therefore, the attribute “attributelD” that
defines the name of such attribute to be released/forwared. Due to the sake of simplicity
in this document, it was not used the attribute’s URN. However, the “attributelD” should be
globally unique.

At the Accounting Server side, there is one configuration file which should be adjusted, and
that is out of the AMAAIS package distribution: the Hibernate configuration file. Essential
parameters like the database host, database port, username and password should be
set. Please, refer to the Hibernate documentation website? to properly understand each
available option. Another fundamental piece of software that should be configured and
tested beforehand is the PostgreSQL, which is the database software used in the scope of
AMAAIS. Since just the JDBC driver for PostgreSQL is distributed with AMAAIS, the tuning
of the database should be made by the user, consulting the documentation website?.

2Hibernate Documentation available at: http://www.hibernate.org/docs.
3PostgreSQL Documentation available at: http://www.postgresgl.org/docs.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 18

© o N o g » w N B

NNNNN R R R R R R R R P e
X ®W N P O © ® N O O~ W N P O

N
(&)

AMAAIS Project Phase 2 . Deliverable D2
Public

6 Collector Guidelines

This section provides a practical guide on how to develop service-dependent Collectors.
Throughout the section it will be used the example of a printing service to better illustrate
how different services are attached to the AMAAIS system.

It is important to note that even if this section is directed and described using an example,
developers should not be retained to printing. Other use cases like SMS accounting,
network bandwidth, etc., can be also considered.

Another essential point to mention is the use of the Common Accounting Information
Model presented on Section 4. Developers should use the accounting concepts described
in the AMAAIS information model (e.g., Accounting Session, Accounting Records) in or-
der to successfully benefit from extending the Collector component to service-dependent
scenarios.

6.1 Extending the Collector class

The Collector class is a Java interface that just provide some methods to be implemented.
Based on the printing example, the following code is a skeleton on how the Collector class
may be extended.

Listing 3: Example on how to extend the Collector class

public class PrintingCollector implements Collector {

private static Logger logger =
Logger.getLogger(PrintingCollector .class .getName());
private static final long PRINTING_.COLLECTOR_PERIOD = 600000;

private boolean islnitialized;
private VPPLogParser parser = null ;
private Timer timer = null ;

public int init(AccountingClient ac) {
logger.debug(” Initializing the printing collector”);
islnitialized = false ;
parser = new VPPLogParser(ac);
timer = new Timer(true);
islnitialized = true ;
return RET_OK;
¥

public int start() {
logger.debug(” Starting the printing collector”);
if (islnitialized == false) {
logger.error(”"Not initialized”);
return RET_ERROR.START;

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 19

26

27

28

29

30

31

32

33

34

35

AMAAIS Project Phase 2 . Deliverable D2
Public

timer.scheduleAtFixedRate(parser, O,
PRINTING_COLLECTOR_PERIOD);
return RET_OK;

}

public void stop() {
logger.debug(” Stopping the printing collector”);
if (timer !'= null) timer.cancel();

}

Before describing the Listing 3, it is important to mention that:

e The Printing Collector example, which will be used throughout the current and fol-
lowing sections, is composed by a parser;

e The parser looks to a specific file, grabs the metered information and composes
Accounting Sessions and Accounting Records accordingly to its needs;

e The parser is a totally independent piece of software that can be implemented in
several ways. This section does not aim to exhaust nor explain specific details of a
parser implementation. The focus is to explicit how to extend a Collector, and once
the metered data is available (e.g., number of pages, colored, etc.), explain how to
organize such data — according to the Common Accounting Information Model of
AMAAIS —, and how to interface with the Accounting Client API.

Observing the Listing 3 at line 3, there is a logger declaration for information and debug
purposes. This is not an essential part of extending a Collector, but it is highly recom-
mended due to best practices for accounting components. Lines 5-9 are specific declara-
tions for the Printing Collector implementation. The variable “isInitialized” controls whether
the daemon is up and running or not. The variable “VPPLogParser” is an object which rep-
resents the parser that grabs the printing information. Such parser will be better explained
on Sections 6.2 and 6.3. The variable “Time” is a variable that schedules the interval that
the parser will be executed. The static variable “PRINTING_COLLECTOR_PERIOD” is ac-
tually the interval rate, in milliseconds, that the parser is executed. This value can vary
and should be tuned. However, in the specific case of parsing print server logs, we can
assume that some minimal delay can be accepted in the accounting process.

The Listing 3 at lines 11-35 contains the implemented methods from the Collector interface
class. It is important to note that within the “init()” method, line 14, the parser is instanti-
ated. Other specific variables (depending on the service needs) can be instantiated here.
At the method “start()”, line 26, the parser is scheduled and started. Note that scheduling
a parser is not strictly necessary. The whole implementation of the Collector can be made
using one single class, in the same thread. However, it is recommended due to process-
ing load and failures to start a separated thread to handle different jobs (e.g., as parsing
files or consulting a database). The method “stop()” basically stops the “timer” execution,
which consequently stops the printing parser.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 20

© o N o o » w N B

-
o

AMAAIS Project Phase 2 . Deliverable D2
Public

6.2 Using the ParsingLogController Util

Since Collectors are components that in many cases rely on processes like parsing to
account data, a tool called “ParsingLogController” was created. This tool has the goal to
turn the parsing process more transparent and reliable to its users. Basically, it has the
following interfaces and functionalities:

e Provides a method “read()” that reads one specified file and returns the current line
(string);

e Provides a method “signalSent()” which signals the ParsingLogController that data
until a certain point was parsed and forwarded to the Accounting Client component;

e Once instantiated, the ParsingLogController creates files in order to store some in-
formation like (a) bytes which were just parsed until the moment and (b) bytes that
were parsed and sent through the Accounting Client API,

¢ During its initialization, the ParsingLogController looks to these files and checks its
consistency by checking if everything that was parsed was also sent to the Account-
ing Client. If the ParsingLogController identifies that something was not sent, a prob-
lem may be occurred and the parsing process starts from where it stopped before
(i.e., right after from where the “signalSent()” was called).

The Listing 4 provides an example on how the ParsingLogController should be used.

Listing 4: Example on how to use the ParsingLogController

public void run() {
ParsingLogController logController =

new ParsingLogController(”print”, "vpp”);
String currentlLine;
while ((currentLine = logController.read()) != null) {

}

logController.signalSent();

}

Observing the Listing 4, it is important to highlight the “ParsingLogController” class in-
stantiation. The constructor method requires to set two strings which are (1) the service
identifier and (2) the log identifier. The service identifier should be the same used in the
amaais-client.conf configuration file. In this case, just as an example, the key used to
configure the name of the “vpp” log file which belongs to the “print” service should be:
“collector.print.logfile.vpp.name = vpp_accounting-2010-05.log”.

The Listing 4 at line 5 presents a “while()” construction that reads data from the instan-
tiated “ParsingLogController” class. Since the method “read()” returns some data or null
(when there is no data), some condition checking should be made. After the data returned
is treated and organized as accounting classes following the Common Accounting Infor-
mation Model (this process is better explained on Section 6.3), the “signalSent()” should

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 21

© © N o 0 »~A W N P

NONNNN N NNN PR R R R R R R R
©® N o o & W N P O © ® N o o A W N P O

N
©

AMAAIS Project Phase 2 . Deliverable D2
Public

be called. Note that the “signalSent()” can be called in any point or any time during the
“ParsingLogController” object’s lifetime. It will depend on how the parser is implemented.

It is important to note that at the time of the document conclusion, the implementation of
ParsingLogController tool was stable in the functionalities listed in this section. However,
a desired functionality that was not tested but partially implemented is the “rotation trans-
parency”. Such functionality enables a more transparent interface if log files that are being
currently parsed get suddenly rotated by the application/system.

6.3 Generating Accounting Sessions and Records

An essential step on building a service-dependent Collector is to generate Accounting
Sessions and Records based on the AMAAIS Common Accounting Information Model
described on Section 4.

The Listing 5 presents a incomplete piece of code that highlights how Accounting Sessions
and Records can be constructed using AMAAIS common concepts.

Listing 5: Example on how to construct Accounting Sessions and/or Records based on
Listing 4

public void run() {
ParsingLogController logController =

new ParsingLogController(”print”, "vpp”);
String currentlLine;
while ((currentLine = logController.read()) != null) {

/!l Creates an Accounting Session
int sessionRef = client.startAcctSession("VPP");
/!l Splitting the ’'currentLine’ based on the
/I "VPP_LOG_FILE_ DELIMITER' static value that
/!l represents a log file delimiter
String [] fields = currentLine
.split (VPP_LOG_FILE_DELIMITER);
/! Creating a Record
AcctRecord record = new AcctRecord ();
/!l Filling the mandatory record attributes
Date t = new Date();
record.setTimestamp (t);
AcctAttribute attr;
/!l Parsing number of pages, represented by
/!l 'FIELD_POS_PAGES’ static value
try {
int pages = Integer
.parselnt(fields [FIELD_.POS_PAGES]);
attr = AcctAttributeFactory
.getAcctAttribute(”pages”);
((AcctAttrinteger) attr).setValue (pages);
record.addAttribute (attr);
} catch (...) {

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 22

30
31
32
33
34

35

AMAAIS Project Phase 2 . Deliverable D2
Public

}

logController.signalSent();

}

Observing the Listing 5 at line 7 it is described how an Accounting Session is created. The
method “startAcctSession()” requires an identifier that is the log ID (usually, the same as
the used on “ParsingLogController” constructor). Lines 14-17 describes the instantiation
of an Accounting Record and the mandatory attribute that should be fulfilled (timestamp).
Lines 18-27 describes how an Accounting Attribute is instantiated using the example of
matching the number of pages (type integer). Note that at line 24 it is used an Attribute
Factory which grabs the type of such attribute. Even if not strictly necessary, the AMAAIS
project assumes the use of an Attribute Dictionary that should be globally common among
Collectors, Accounting Clients, and Accounting Servers. Moreover, the missing parts of
the code represented by ellipsis may contain specific parts of the implementation — as
mentioned before, the Collector developer should understand its necessities and adapt it
to the AMAAIS extensibility.

6.4 Notes on the Integration with the Accounting Client

The integration of a Collector and its Accounting Client is made through an API as men-
tioned before. However, there are some points that should be taken into consideration
when developing a service-dependent Collector:

e The Accounting Client is totally responsible on sending/forwarding Accounting Ses-
sions/Records to the Server;

e The Collector component cannot control when the data will be sent to Servers, but it
controls if, for example, the parsed data was “given” to the Accounting Client;

e The users can tune the configuration file amaais-client.conf to set what is the buffer
size at the Accounting Client side. This option may impact directly on how often the
Accounting Client sends Accounting Sessions/Records to the Accounting Server.

6.5 Building a Daemon

Figure 5 presents the class diagram of the daemons developed in the scope of AMAAIS.

Even if daemons are not only related to Collectors, Collector’'s developers have the re-
sponsibility to build the proper daemon integrating (a) the developed Collector component
and (b) the Accounting Client. Therefore, the Listing 6 presents a complete example on
how a daemon should look like in the scope of the printing example.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

AMAAIS Project Phase 2 Public

Deliverable D2

AccountingClient

—acctProtocol: AccountingProtocol
-refransmissions: int
-bufferSize: int

1
1
] \1 1
1

iy

Printer AcctClientDaemon SMSAcctClientDaemon IdPAcctClientDaemon

SPAcctClientDaemon

—acctClient: AccountingClient
+printCollector: PrintingCollector

-acctClient: AccountingClient
+smsCollector: SMSCollector

+acctClient: AccountingClient
+idpCollector: IdPCollector

+acctClient: AccountingClient
+spCollector: SPCollector

+maing) +maing +main) +main)
1 1 1 1
1 1 1 1
PrintingCollector SHISCollector IdPCollector SPCollector
Figure 5: Daemons Class Diagram
Listing 6: Complete example of the Printing Daemon
public class PrintAcctClientDaemon {
private static Logger logger =
Logger.getLogger(PrintAcctClientDaemon . class .getName ());
private static AccountingClient acctClient = null ;
private static PrintingCollector printingCollector = null ;

/! Shutdown hook that
private static class
public void

is called when the daemon

run() {

logger.debug(”Shutting down the printing

accounting client daemon”);
/I Terminate all running components
if (printingCollector null)

printingCollector.stop ();
if (acctClient
logger.info(”Printing accounting

client daemon terminated”);

¥
¥
public static void main(String[] args) {
BasicConfigurator.configure ();
logger.info (” Starting the printing
accounting client daemon”);
/!l Register the shutdown hook

DaemonShutdownHook sdHook = new DaemonShutdownHook () ;

Runtime . getRuntime (). addShutdownHook (sdHook) ;
/!l Initialize the config util
ConfigUtil config ConfigUtil.getlnstance ();

is terminated.
DaemonShutdownHook extends Thread {

null) acctClient.stop ();

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project

Page 24

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

AMAAIS Project Phase 2 . Deliverable D2
Public

if (!config.init(”amaais—client.conf”)) {
logger.error("Error initializing
the config util”);
System. exit (Accounting. RET_ERRORL_INITIALIZE);
¥
/! Initialize the accounting client
acctClient = new AccountingClient ();
if (acctClient.init() != Accounting.RET.OK) {
logger.error ("Error initializing the
accounting client”);
System . exit (Accounting.RET_ERROR_INITIALIZE);
¥
[/l Start the accounting client
if (acctClient.start() != Accounting.RET.OK) {
logger.error("Error starting the
accounting client”);
System. exit (Accounting .RET_LERROR_START);
¥
/1 Initialize the printing collector
printingCollector = new PrintingCollector ();
if (printingCollector.init(acctClient) !=
Accounting .RET_OK) {
logger.error("Error initializing the
printing collector”);
acctClient.stop ();
System. exit (Accounting. RET_ERRORL_INITIALIZE);

¥
/!l Start the printing collector
if (printingCollector.start() != Accounting.RETOK) {
logger.error ("Error starting the
printing collector”);
acctClient.stop ();
System. exit (Accounting .RET_LERROR_START);
}
while (true) {
try {
Thread.sleep (...);
} catch (...) {
}
}

Observing the Listing 6 it worth to highlight that the main method basically invokes (with
“init()” and “start()”) the Collector component and the Accounting Client component. In
the “while()” construction the “sleep()” call is not strictly necessary, being just an specific
implementation detail of the parsing component.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 25

AMAAIS Project Phase 2 . Deliverable D2
Public

7 Implementation Documentation

In the following sections we present technical information related to the AMAAIS imple-
mentation. The description is not exhaustive but describes the majority of the functionali-
ties and how they were meant to work in the scope of each AMAAIS component.

7.1 AMAAIS SAML-based Protocol for Exchanging Accounting
Records (ASPEAR)

The main goal of the protocol is to exchange accounting records. The ASPEAR proto-
col is based on the SAML specification [4], meaning that message types, attributes, and
encapsulation are followed by the SAML standard.

ASPEAR has three characteristics: flexibility, extensibility, and adaptability. It means that
the protocol should handle future extensions without redesign and that it should be able to
adapt in any context that involves the exchange of accounting records.

7.1.1 ASPEAR as a SAML Protocol Extension

The ASPEAR protocol is based on the SAML 2.0 protocol following all recommen-
dations by the SAML Core document [12] which describes how a Request/Response
should be constructed and which attributes (e.g., version, issuelnstant, issuer) it
must contain. Therefore ASPEAR implements a new profile, with the namespace
“urn:mace:switch.ch:doc:accounting:profiles:1.0” and with the prefix “accp” (acronym for
ACCounting Protocol).

Basically, the ASPEAR profile differs from how an SAML Assertion message is exchanged.
Among the protocols defined by the SAML Core document [12]—especially the “Asser-
tion Query and Request Protocol”—an SAML Assertion with a Request message is used
to query a certain kind of information. Applied to the purpose to exchange accounting
records, the Client/Server should push records to the other end. In this case an Assertion
can be used to inform (as an Accounting Request) which attributes were accounted and
their values.

Another difference is that the Response—inside the accounting profile scope—is just used
to inform if the SAML Assertion was received/persisted accordingly or not.

7.1.2 Protocol Messages

The ASPEAR protocol is a so-called Request-Response protocol: we therefore define
two message types: “Accounting Request” and “Accounting Response”. Each of these
messages are described below.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 26

AMAAIS Project Phase 2 . Deliverable D2
Public

7.1.2.1 Accounting Request

The accounting request is represented by the XML element “accp:AccountingRequest”.
The message is formed as follows:

e a header, represented by the XML element “accp:AccountingRequest”, which en-
capsulates all the other elements

¢ inside the “accp:AccountingRequest” element, it is mandatory—as described in the
SAML Core Request/Response—to include at least one SAML Assertion

e The SAML Assertion must contain: (a) one SAML Issuer, which is the Ac-
counting Client URL (identifier) that generated such metered information (e.qg.,
https://printqueue-accountingclient.ethz.ch), (b) one SAML Subject, which is the SP
URL (e.g., https://printqueue.ethz.ch/shibboleth), and (c) one SAML Attribute State-
ment, which contains all the Attributes that should be transmitted.

The Listing 7 shows an example of the Accounting Request message.

Listing 7: Accounting Response message

<accp:AccountingRequest
xmins:accp="urn:mace: switch.ch:doc:accounting: profiles:1.0"
AccountingRequestType="PushAssertionRequest”
ID="_21f025ca846cala4124c1b36d4905821"
Issuelnstant="2010-10-18T15:20:15.600Z"
Version="2.0">

<saml: Assertion

© o N o g 9~ w N B

N N N N N N N N N N = [= = = = = = = =
© <] ~ (2] (&) s w N = o © oo ~ o O S w N = o

w
o

xmlns:saml="urn:oasis:names:tc :SAML:2.0: assertion”
xmins: xsi="http ://www.w3.0rg/2001/XMLSchema—instance”
ID="_089ed0c014a534281228eb2f2c94bd87"
Issuelnstant="2010—-10-18T15:20:15.4842"
Version="2.0">

<saml:lIssuer>
https :// print—accountingclient.ethz.ch
</saml:lssuer>
<saml: Subject>
<saml :NamelD
Format="SPNameQualifier”
>https :// printqueue.ethz.ch/shibboleth </saml:NamelD>
</saml: Subject>
<saml: AttributeStatement >
<saml: Attribute
FriendlyName="recordTimestamp”
Name=".2.16.756.1.2.7.1.1.11"

NameFormat="urn : oasis :names: tc :SAML:2.0: attrname—format: uri”>

<saml: AttributeValue
Xsi:type="accp:date”>
Mon Oct 18 17:20:11 CEST 2010

Version 1.0

© Copyright 2011 the Members of the AMAAIS Project

Page 27

31

32

33

34

35

36

37

38

© o N o g » w N B

AMAAIS Project Phase 2 . Deliverable D2
Public

</saml: AttributeValue >
</saml: Attribute >

</saml: AttributeStatement >
</saml: Assertion >
</laccp: AccountingRequest>

It should be observed that the “accp:AccountingRequest” element has the attribute “Ac-
countingRequestType”. This attribute was created due to the necessity to specify which is
the type of the request. In the current implementation of the Accounting Server and the
ASPEAR protocol, the only “AccountingRequestType” available is the “PushAssertionRe-
qguest”. It means that the client is generating an Accounting Request message to push
Assertions containing Accounting Sessions/Records.

7.1.2.2 Accounting Response

The Accounting Response is represented by the XML element
“accp:AccountingResponse”. The message is formed as follows:

e a header, represented by the XML element “accp:AccountingResponse”, which en-
capsulates all other elements

e the “accp:AccountingResponse” element which must contain one SAML Status ele-
ment

e The SAML Status contains one SAML StatusCode element which expresses a stan-
dardized code to describe how the Accounting Request was processed

e The SAML Status can contain (not mandatory) a SAML StatusMessage which textu-
ally describes the SAML StatusCode element. For example, if the SAML StatusCode
express an error code, the SAML StatusMessage can contain a text with the error
description.

Considering the information above, Listing 8 shows a brief example on how the Accounting
Response message is composed.

Listing 8: Accounting Response message

<accp:AccountingResponse
xmins:accp="urn:mace: switch.ch:doc:accounting: profiles:1.0"
ID="_b5164b875b42e51a38878a09d526¢c785"
Issuelnstant="2010-10-18T15:20:15.787Z2"
Version="2.0" >

<samlp: Status
xmlns:samlp="urn:oasis:names:tc:SAML:2.0: protocol”>
<samlp: StatusCode

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 28

10

11

12

13

14

AMAAIS Project Phase 2

Public Deliverable D2

Value="urn:oasis :names:tc :SAML:2.0: status : Success”/ >
<samlp: StatusMessage>Persisted Successfully </samlp: StatusMessage>

</samlp: Status>

</laccp: AccountingResponse>

It is important to mention that the definition of the SAML Status element structure was
not modified (as described in the SAML Core document [12]). Therefore, even if the
ASPEAR implementation does not bring any other SAML element within the SAML Status,
the ASPEAR core can be extended to allow other kinds of SAML structures.

7.1.3 Protocol Class Diagram

Figure 6 depicts the common classes used to build an ASPEAR message. Theses com-
mon classes should be used by the protocol implementation and any other piece of soft-

ware that uses ASPEAR.

AccountingProtocol

+unpackacctSAMLMessage(String): AcctProtocolMessage
+packAccountingProtocoMessage (AcctProtocolMessage’): String

AcctProtocoiMessage

AcciRequest

N

AcctResponse
#!ssl.ueln_stant: BEt -msgType: StatusType
ThubTig -descr: Strin
#version: Siring . d
+zet. 0 :Szi”'%:l
+get.. O . gEL A
% 1
1
PushAcctDataRequest
-acctSess; AcctSession StatusType
-assertionld: String -code: String
-assertionlssuelnstant: Date
-issuerlURL; String +eet. (.
-subjectMamell: String +get.. O .
-subjectFormat: String
+azet.. 0
+get.. O ...

Figure 6: ASPEAR implementation class diagram

Version 1.0

© Copyright 2011 the Members of the AMAAIS Project

Page 29

AMAAIS Project Phase 2 Deliverable D2

Public

The AccountingRequest class abstractly defines a generalization of possible requests.
The concrete class that can be instantiated is the “PushAcctDataRequest”, which repre-
sents a specific type of Request message. On the other hand, the AccountingResponse
IS a concrete class since it is mandatory to generate responses containing some specific
information (e.g., StatusType).

7.1.4 Protocol Sequence Diagram

Figure 7 depicts ASPEAR messages exchanged between components.

1 AccountingClient : AccountingProtacal L AcctServer

1! String SAMLMsgRequest = packAccountingProtocolbessage ()

U

2 doPost(String SaMLMsgRequest)

3 : AccopntingMessage acctivlsg 1= unpackAcctSAMLMessage()

Uiﬂ

4 1 inf result ;= persisthoctSession()

5 ! Strifig SAMLMsgResponse 1= packAccountingPr%Dh:ucnIMessageO

{ & ! String SAMEMsgResponse

Z ﬁccc:uritingMessage acctvsg = unpackﬁcctSﬁMLM,essageO

i

Figure 7: ASPEAR messages exchanged between implementation components

Assuming that the Accounting Client has a “AcctProtocolMessage” object with all the nec-
essary information, it calls the API of the Accounting Protocol (ASPEAR) to marshal it.
The result is a SAML-based message (in other words, ASPEAR message) ready to be
sent. The Accounting Client sends the ASPEAR message through HTTP (POST method)
to the Accounting Server. Once the message is received, after checking its validity, the
Accounting Server unmarshals it using the ASPEAR implementation API. Once the Server
gets the object reflecting the Accounting Session and its Accounting Records, it persists it
in the Accounting Database. Just after the attempt to persist the accounting information,
it generates an Response message with the result (success or failure, error).

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 30

AMAAIS Project Phase 2 . Deliverable D2
Public

In order to generate the response, the Server packs an “AcctProtocolMessage” object that
reflects the AccountingResponse type and sends the generated string (to the Accounting
Client, in this case). In a last step the Accounting Client unpacks the response message
and checks the result to evaluate which action should be taken as the next sending itera-
tion (e.g., a retry).

7.1.5 Interface / API

The ASPEAR protocol has two public methods:

public String packAcctProtocolMessage(AcctProtocolMessage acctMsg)
Pack all information contained in the AcctProtocolMessage object into a SAML string ac-
cording to the type of the AcctProtocolMessage.

public AcctProtocolMessage unpackAcctSAMLMessage(String acctMsg)

Unpack a SAML string into the AcctProtocolMessage object. Basically, the method parses
the string and populates the object accordingly (depending on what kind of message was
received).

7.2 Collector

The Collector component is mainly responsible to observe metered data (from Meter com-
ponent) and turn it in accounting information. Moreover, the Collector is responsible to use
the Accounting Client API to push Accounting data to the Server.

7.2.1 Interfaces

The Collector provides an interface to communicate actively with other system’s compo-
nents. In fact, the Collector interface class has some methods that should be implemented
by classes that “implements” the Collector object (e.g., IdPCollector, SPCollector). The
method start(), stop(), and init() are mandatory to be implemented since the junction of
Collectors and Accounting Clients form system’s daemons.

7.2.2 Component Architecture

Figure 8 depicts the Collector class diagram with some examples of service-independent
and service-dependent use cases.

The Collector is an abstract class that defines a common interface to subsequent classes
that extends it. Basically, as described in Section 6, anyone can develop a Collector to
handle accounting in service-dependent scenarios by extending the Collector abstract/in-
terface class.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 31

AMAAIS Project Phase 2 . Deliverable D2
Public

< <interfaces:=
Collector

+init{accountingClient): int

+start(): int
+stop () int
PrintingCollector SMSCollector IdPCollector SPCollector

Figure 8: Collector Class Diagram

7.3 Accounting Client

The Accounting Client component is responsible to send Accounting information. This
component has a well-defined API to interface with, for example, the Collector. The Ac-
counting Client is not a daemon itself: it works together with the Collector component,
which basically receives information generated by, e.g., a parser (Collector), and organizes
such accounting information to be sent to a given Accounting Server. It uses ASPEAR to
pack and unpack accounting messages.

7.3.1 |Interfaces

The Accounting Client API defines the following methods:

public int startAcctSession()

Creates a new accounting session. After creating a session, accounting records can be
assigned to this new accounting session. The method returns the local-scope reference
of the accounting session or an error code.

public int stopAcctSession(int sessionRef)

Terminates an existing accounting session. If there are any pending accounting records,
these are sent to the accounting server. If no accounting record is specified it returns
an error. After termination no more accounting records can assigned to the specified
accounting session. sessionRef specifies the local-scope reference of the accounting
session (that is returned by the startAcctSession). The method returns an error code.

public int addAcctRecord(int sessionRef, AcctRecord record, boolean isLast)

Assigns an accounting record to an accounting session. Multiple records can be assigned
to a session before sending them or every record can be sent immediately. The last
record of a session has to be specified using the isLast parameter. sessionRef specifies
the local-scope reference of the accounting session; record is the accounting record to

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 32

AMAAIS Project Phase 2 . Deliverable D2
Public

be assigned to this session; isLast is to be set to true if this record is the last record in
the session and to false otherwise. The method returns the local-scope reference of the
accounting record (the record number) or an error code.

7.3.2 Component Architecture

Figure 9 depicts the Accounting Client class diagram.

<<interface= >
Accounting

+initd): int

+startd: int

+stop(): int

+startaccountingSession(String servicelD): int
+stopAccountingSession{int sessionRef): int
+addacctRecordiing sessionRef, AcctRecord record): int
+HlushAcctSession(): int

i

AccountingClient

—acctProfocol: AccountingProtocol
-refransmissions: int
-bufferSize: int

Figure 9: Accounting Client Class Diagram

7.4 Accounting Server

The Accounting Server, which is implemented as a Java-based servlet, receives SAML
requests over HTTP which contain accounting sessions that have to be stored in the
database. This component uses the AMAAIS SAML-based protocol component for pars-
ing the received SAML requests, and the Accounting Database component for storing the
account sessions.

7.4.1 Interfaces

The Accounting Server defines the following methods:

doPost (HttpServletRequest req, HttpServletResponse resp)
Handles the execution of the HTTP post request. Parses the received SAML-based re-
guest and stores accounting session using the Accounting Database component.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 33

AMAAIS Project Phase 2 . Deliverable D2
Public

7.4.2 Component Architecture

Figure 10 illustrates the class diagram of the Accounting Server component. The Account-
ingServer class implements the HttpServlet interface.

O

HttpServiet

Acctserver

+doPost(HipServietRequest req, HipServietResponse resp): void

Figure 10: Accounting Server Class Diagram

7.4.3 Component Behavior

Client SecoutingServer AccountingProtocol AccountingDatabase

1 1 Push Accouting Session() ~ 2 UnpatkACctSAMLMessage()

'
o !
Tz

3 addnccoq'JtingSession()

h §

4 : packAcctProtocolMessage() "

; e
= U

i}
5: 5end Accouting Response() - -

Figure 11: Accounting Server Sequence Diagram

Figure 11 illustrates how the Accounting Server interacts with the other AMAAIS compo-
nents. Client sends an accounting session to the server (1), in order to be stored. The
Accounting Server unpacks the SAML-based message using the accounting protocol (2).
The received session is stored using the accounting database component (3). The re-
sponse is then packed (4) using the protocol and sent to client (5).

7.5 Accounting Database

The accounting database component handles the storage of accounting sessions. Its
implementation uses the Hibernate Java persistence framework, for mapping between the

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 34

AMAAIS Project Phase 2 . Deliverable D2
Public

Java-based objects oriented model and the relational back-end. Accounting sessions are
stored in a PostgreSQL database.

7.5.1 Interfaces

The Accounting Database defines the following methods:

public void addAccountingSession(AcctSession acctSession)
Stores the specified accounting session in database. If the session already exists, the
new accounting records will be added to the existing session.

public AcctSession getAcctSession(String sessionID)
Returns the accounting session and associated accounting records identified by the ses-
sion ID.

public List<AcctSession> getAcctSessions(Date from, Date to)
Returns the list of accounting sessions and associated accounting records that have their
start time in the specified time interval.

public List<AcctSession> getAcctSessions(Date from, Date to, String

service)

Returns the list of accounting sessions and associated accounting records that have their
start time in the specified time interval and are related to the specified service.

public void deleteAcctSession(String sessionID)
Deletes an accounting session and associated accounting records from the database.

7.5.2 Component Architecture

DAD

+begin()
+commit()
+rollbacki)
+elosel)

1

AcctSessionDAD

+addiccountingession(AcckSession acckSession)()
+getAcckSession;3tring sessionll): AcctSession

+gethcctSessions(Date from, Date ko) List<AcckSession >
+getAcctSessions{Date from, Date ko, String service): List<AcckSession =
+deletefcctSessionString sessionlD)

Figure 12: Accounting Database Class Diagram

The UML class diagram of the database component is presented in Figure 12. The ab-
stract class DAO implements the basic transactional functionalities (begin, commit, roll-
back), while its subclass AcctSessionDAO contains specific methods for storing accouting
sessions.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 35

AMAAIS Project Phase 2 Deliverable D2

Public
7.5.3 Data Model

accountingsessions accountingrecords

PK | sessionid PK |recordid
acctclient < recordnumber
serviceid recordtime
starttime P FK1 | sessionid
endtime recordindex
eventtimestamp

accountingattributes
P PK | attrid -
oid
> FK1 | recordid ¢
attrindex
attributeboolean attributedate attributedouble attributeinteger attributestring
PK,FK1 | attrid PK,FK1 | attrid PK,FK1 | attrid PK,FK1 | attrid PK,FK1 | attrid
value value value value value

Figure 13: AMAAIS Data Model

Figure 13 illustrates the AMAAIS data model used for storing accounting sessions into the
PostgreSQL database. Accounting sessions are stored in the accountingsessions table.
The table accountingrecords stores the accounting records. There is a one to many re-
lationship between accountingsessions and accountingrecords. Attributes are stored in
the tables accountingattributes tables, while values of different types are kept in attribute-
boolean, attributedate, attributedouble, attributeinteger and attributestring tables.

7.6 Visualization Component

AMAAIS collects large sets of data. To make these piles of data easily consumable for the
user, the visualization component helps her to get a quick overview and understanding
of the data. A reporting tool provides the user with different types of charts to visualize
the data and also export the data in common file formats (e.g., for further processing).
Concerning the monitoring aspect of AMAAIS, the charts also allow the viewer to easily
identify anomalies in the data which otherwise would be hard to find in the raw data.

7.6.1 Evaluation of the visualization software

For the visualization of the collected data on the accounting server, the software has to
fulfill the following criteria:

e provide a web interface to show reports

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 36

AMAAIS Project Phase 2 . Deliverable D2
Public

support common export formats for report (PDF, CSV, Excel)

provide an interface to an SQL database

run on multiple operating systems (i.e., Windows, Linux, Mac OS)

provide a user-friendly interface to design reports or adapt existing reports

provide good documentation about installation and usage

provide a large user base to ensure future maintenance and development of the
software

The following software products were evaluated:

¢ Business Intelligence and Reporting Tools (BIRT): http://eclipse.org/birt/
e Pentaho Reporting: http://reporting.pentaho.org/

e JasperReports: http://jasperforge.org/projects/jasperreports

All of these products are open source. They are available as a free community edition as
well as versions with commercial support. For the AMAAIS project, BIRT is the software
that best matches the criteria listed above. The biggest differences between BIRT and the
other products are the user-friendly interface and the sound documentation. An advantage
of JasperReports and Pentaho Reporting is that they are parts of business intelligence
(BI) suites that offer the BI typical extract transform load (ETL) functionality. BIRT does
not provide that, but as the ETL functionality is not needed in AMAAIS, that is irrelevant.

7.6.2 Eclipse BIRT

BIRT consists of two main components: a visual report designer (Eclipse plugin) for cre-
ating BIRT Reports and the BIRT viewer, a component for generating reports. The report
designer uses a charting engine that can be used as a standalone component to integrate
charts into Java applications. For Windows, a standalone application to design reports
is available, the RCP Report Designer. It uses the Eclipse Rich Client Platform (RCP)
technology. The information given below refers to the current BIRT version 2.6.1.

7.6.2.1 Functionality

Supported platforms Platform independent (requires Java JDK 1.5 or newer)

Data sources JDBC, XML, CSV, web services, POJO (plain old java objects)/Java Beans
Report export formats HTML, PDF, Postscript, RTF, CSV, Word Doc, XLS, PPT

Chart formats PNG, JPG, BMP, SVG

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 37

AMAAIS Project Phase 2 . Deliverable D2
Public

Chart types Bar, line, area, pie, meter, scatter plot, stock, bubble, difference, gantt, tube,
cone, pyramid, radar

Further functionality ~ Preview of report in report designer, multiple data sources per re-
port, drill down analysis in report, internationalization (currency, character set, ...),
sub-reports, parametrized reports

7.6.3 Installation and Configuration
7.6.3.1 Report Designer

The Report Designer for BIRT is available as an Eclipse plugin or as a standalone applica-
tion. The installation instructions are given on the BIRT web pages: http://www.eclipse.
org/birt/phoenix/build/.

7.6.3.2 Viewer web application

As a web interface the BIRT Viewer J2EE Application (see http://www.eclipse.org/
birt/phoenix/deploy/) is used. The installation instructions are given on the web site:
http://www.eclipse.org/birt/phoenix/deploy/viewerSetup.php. For the test bed in-
stallation the BIRT Viewer was installed as a web application in Tomcat 6.

7.6.4 Example report

The example bar chart below has been created using Eclipse Report Designer. The fol-
lowing steps are necessary to create the chart:

o Define data source
e Define data set

e Add chart to report page
The report design file in XML format is included in the sources of the first version of the
AMAAIS release.

7.6.4.1 Data source

The data source is defined as follows:

Driver com.mysql.jdbc.Driver (v5.1)
Database URL jdbc:mysql://127.0.0.1:3306/amaaisdb
User name <database username>

Password <password>

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 38

AMAAIS Project Phase 2 . Deliverable D2
Public

VPP Printed Pages

0 pages

19:04:31 §7:53:13 §8:12:22 45:26:58 (#5:32:48 05:5{:25 §8:54:28 §48:59:26 $9:04:67 §9:15:43 089:22:51 49:30:05 09:33:23

27.12.2010 15:50

Figure 14: Chart of the example report vpp-pages

7.6.4.2 Data set

The data set uses the data source defined above and the following SQL query to get the
visualized data:

SELECT ‘AccountingSessions‘. ‘event-timestamp®,
Attributelnteger. ‘attr-value‘ AS value
FROM AccountingSessions LEFT JOIN AccountingRecords USING (‘session-id‘)
LEFT JOIN AccountingAttributes USING (‘record-id‘)
LEFT JOIN AttributeInteger USING (‘attr-id‘)
WHERE AccountingSessions. ‘service-id‘ = ’VPP’
AND AccountingAttributes. ‘0id‘=’2.16.756.1.2.7.1.3.17;

7.6.4.3 Chart
The bar chart is defined with the following properties:
Chart Type 2-dimensional bar chart

Y axis attribute value of the attribute “printed pages”

X axis event timestamp

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 39

AMAAIS Project Phase 2 . Deliverable D2
Public

7.6.4.4 Report output

The chart of the report output is shown on figure 14.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 40

AMAAIS Project Phase 2 . Deliverable D2
Public

8 Summary and Conclusions

The main achievement of AMAAIS Phase 2 was the complete development of AMAAIS
components. As a result, the prototype produced respects all the requirements described
in Phase 1, and all component functionalities refined during the beginning of Phase 2.

Summarizing, the current implementation confirms the proposal from Phase 1 that the
architecture could be extended with new components, since the component’s hierarchy
(from the Meter to Accounting Server) is defined in a flexible manner — multiple instances
of the same component (e.g., Collectors) can be instantiated to avoid a huge demand, for
example. Moreover, it is possible to exchange Accounting records between domains inside
a federation, and also domains from different federations. The additional feature attached
to the system is the forwarding of Accounting Records. The employed mechanism allows
— in a well-known XML-based description format (since it is also used by Shibboleth’s
IdP implementation) — to express policies/rules to forward records. The component that
evaluate forwarding rules was developed by AMAAIS.

Even if the prototype was not extensively tested nor deployed in a production environ-
ment, the service-dependent Collectors developed for SMS and Printing were success-
fully tested in a test-bed. Also, the service-independent Collectors demonstrated to run
in compatibility with the Shibboleth implementation of SP and IdP (without log files set to
debug mode).

Related to the enhancements, the AMAAIS team understands that the prototype version
1.0 — last version until the conclusion of this document — has its limitations (mainly regard-
ing configuration parameters and security) and already planned to enhance it on AMAAIS
Phase 3. The Phase 3 will be mainly focused on building a security mechanism to ex-
change Accounting Records, to come up with a solution related to exchange charging
information, and refining the visualization and database parts.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 41

AMAAIS Project Phase 2 Deliverable D2

Public

Terminology

IdP: Identity Provider.
SP: Service Provider.

Institution: A large important organization such as a university that, in the scope of this
document, provide identity credentials.

Resource: An available supply that can be used/consumed, and, in the scope of this
document, provided by Service Providers.

AAl environment: The entire set of conditions under which the Authentication and Au-
thorization Infrastructure is operated, as it relates to the hardware (e.g., servers,
network segments), operating platform (e.g., Shibboleth), or operating system.

DS: Discovery Service.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 42

AMAAIS Project Phase 2 . Deliverable D2
Public

Acknowledgement

This deliverable was made possible due to the large and open help of the members of the
AMAAIS project. Many thanks to all of them.

References

[1] AMAAIS Project. Accounting and Monitoring of AAI Services — Deliverable Phase 1,
October 2009. Available at: http://www.csg.uzh.ch/research/amaais. Visited on: Dec.
2010.

[2] B. Pfitzmann and M. Waidner. Federated identity-management protocols. LECTURE
NOTES IN COMPUTER SCIENCE, 3364:153, 2005.

[3] AMAAIS Project. Accounting and Monitoring of AAI Services — Project’s Website,
June 2009. Available at: http://www.csg.uzh.ch/research/amaais. Visited on: Dec.
2010.

[4] OASIS. Security Assertion Markup Language (SAML), August 2009. Available at:
http://www.oasis-open.org/committees/security. Visited on: Dec. 2010.

[5] Internet2. OpenSAML, August 2009. Available at: http://www.opensaml.org. Visited
on: Dec. 2010.

[6] AMAAIS Project. AMAAIS Phase 1: Scenarios, Requirements, and High-Level Ar-
chitecture, October 2009.

[7] ETHZ Informatikdienste. VPP — Verteiltes Printen und Plotten. Available at:
http://lwww.vpp.ethz.ch/. Visited on: Dec. 2010.

[8] ETHZ Informatikdienste. SMS Gateway der ETH Zrich. Available at:
http://www.sms.ethz.ch/. Visited on: Dec. 2010.

[9] Internet2. IdP Logging - Shibboleth 2 Documentation - Internet2 Wiki, August
2009. Available at: https://spaces.internet2.edu/display/SHIB2/IdPLogging. Visited
on: Dec. 2010.

[10] IETF — Internet Engineering Task Force. RFC 2866 — RADIUS Protocol, June 2000.
Available at: http://www.ietf.org/rfc/rfc2866.txt. Visited on: Dec. 2010.

[11] IETF — Internet Engineering Task Force. RFC 3588 — Diameter Base Protocol, De-
cember 1997. Available at: http://www.ietf.org/rfc/rfc3588.txt. Visited on: Dec. 2010.

[12] OASIS. Security Assertion Markup Language (SAML) — Core Document, March
2005. Available at: http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-
os.pdf. Visited on: Jan. 2011.

Version 1.0 © Copyright 2011 the Members of the AMAAIS Project Page 43

