#### **Seminar Internet Economics**

# **Economy Driven Peering Settlements**



Barbara Schwarz, Gian Marco Laube, Sinja Helfenstein

# Content

| 1 Peering Basics and Motivation | 3  |
|---------------------------------|----|
| Peering – A Business Case       | 11 |
| 3 Further Decision Factors      | 18 |
| Peering in Switzerland          | 22 |
| 5 Settlement Models             | 26 |
| 6 Conclusions                   | 37 |
| 7 Discussion                    | 40 |



# Peering Basics and Motivation



#### **Internet Structure: Set of Autonomous Systems**

#### Autonomous Systems (AS)

- Interior Routing: iBGP
  - Traffic between customers of same ISP
- Exterior Routing: eBGP
  - Traffic with external ISPs



#### Hierarchical ISP Relationships

- ISP buys upstream Traffic to access entire Internet
- No Cost for AS-internal Traffic

#### Very dynamic Relationships

- No stable Structure
- No clear Definition of Tier 1 ISP





#### **Possible Inter-AS-Relationships**

- Transit: One ISP provides (usually sells) Access to all Destinations in its Routing Table
  - Customer-Provider Relationship
  - Provider = Upstream Carrier
- Peering: Both ISPs reciprocally provide Access to each others Customers
  - Mutual open Network Access
  - ► Interconnection Agreement
  - Optional: Backup for Transit Server
  - Non-Transitive Relationship:
     ApeerB and BpeerC does not imply ApeerC



#### **Variations of Cost Allocation**

#### Zero-Settlement Peering without Restrictions

- Unlimited, uncharged Traffic in both Directions
- Infrastructure Cost shared by both Parties

#### Zero-Settlement with Limited Traffic Volume

- Monitoring / Balancing Resource Consumption
- Relative or Absolute Traffic Allowance

#### Flat Rate for Weaker Peer

Instead of Volume-based Transit Charges



### Ways to Interconnect on the Implementation Level

#### Direct Circuit Interconnection

- Point-to-Point between two specific AS
- Very specific investment

#### Exchange-Based Interconnection

- Internet Exchanges (IXs)
- Shared Switches where multiple AS interconnect
  - Shared Investment for multiple partnerships
- ▶ Connection via "Cross-Connect" Link ←







# **Peering Policies Define Prerequisites for Interconnection**

#### Technical Aspects

- Point of Presence (POP) at specific Internet Exchange
- Protocol Version (e.g. BGP-4)
- ▶ Membership of RIPE NCC → Existence of AS Number

#### Business Aspects

- Customer Base (Content Servers / End-Customers)
- Allowed Peering Relations

#### Legal Aspects

- Non Disclosure Agreements
- Security Standards and Legal Bindingness

#### Definition: "Open Peering Policy"

- Willing to peer without Limitations → Zero-Settlement Peering
- No restrictions in the Selection of Partners → With Anyone



# **Internet Traffic Costs – Peering vs. Transit**

#### Peering Costs

- Infrastructure
  - Additional Switches
  - Physical Connection to Peer / Internet Exchange
- Setup Costs
  - Evaluation of Potential Peering Partners and Negotiations
  - Technical Setup
- Maintenance Costs
  - Network Specialists (BGP Skills)
  - Monitoring / Controlling

#### Transit Costs

- Infrastructure
- Transit Charged by Upstream ISP

# Peering: A Business Case



## To Peer or not to Peer (1/6)

#### Analysing Traffic Flow

- End Destination of outgoing Traffic?
- Potential peers are mostly neighbours, but do not need to

#### Potential Peering Partner ISP B

- ▶ 35 Mbps to ISP B
- ▶ (10 Mbps from ISP B)

#### **▶** For Simplicity

 Assumption: Transporting Traffic to Peering Point generates same Costs as to Transit Partner

| Destination ISP | AS#  | Mbps  |
|-----------------|------|-------|
| ISP B           | 8404 | 35.00 |
| COLT Internet   | 8220 | 15.61 |
| Sunrise #1      | 6730 | 13.24 |
| IBS             | 8271 | 8.45  |
|                 |      |       |



# To Peer or not to Peer (2/6)

# Accounting in Transit / Customer Relationship

- ▶ Past: Traffic Volume = 95th Percentile
- ► Today mostly Capacity only
- Avg. Mbps / Month
- Lower Prices for higher Volume (indirect Economies of Scale)

| Mbps / month | CHF / month |
|--------------|-------------|
| 0 – 20       | 60          |
| 20 – 40      | 50          |
| 40 – 60      | 40          |
| 60 – 80      | 30          |
| 80 -         | 20          |





## To Peer or not to Peer (3/6)

#### Important to realise:

- Even Zero-sum peering is not free
- Fixed Infrastructure Costs instead of variable Transit Costs

#### Prices charged by IX

- Prices of TIX Zürich (December `05)
- ▶ 10/100 Base TX due to Traffic < 100 Mbps</p>

#### Distributing fixed Costs

- ▶ Total CHF 1450
- Direct Economies of Scale

| Position               | CHF / month |
|------------------------|-------------|
| 10/100 Base TX<br>Port | 500         |
| 1000Base LX Port       | 2000        |
| Half rack              | 950         |



# To Peer or not to Peer (4/6)



# To Peer or not to Peer (5/6)

#### In our Example (35 Mbps / Month):

► Transit Costs CHF 50 / Mbps

- > Total of CHF 1750
- ▶ Peering Costs CHF 41.42 / Mbps > Total of CHF 1450

- Peering!
- Minor Difference due to high Infrastructure Prices at TIX

#### Problem: Peering not profitable for ISP B

- ▶ Only Transit Costs of CHF 60 \* 10 > Total CHF 600
- ► Compared to CHF 1450 for Peering > Total CHF 1450

Transit!



# To Peer or not to Peer (6/6)

#### No Peering Agreement?

Revenue Loss of ISP B cannot be covered by additional Payments from ISP A

#### Reusability / Traffic Volume

- Peering Infrastructure can be used for other Peering Agreements
- Only Upload Traffic to be paid → Otherwise both would pay a Minimum of 45 \* CHF 40 = CHF 1800 for Transit

#### Solution:

- ISP A and ISP B agreed on significantly cheaper Private Peering
- ▶ But there are many more Factors to consider...



# Further Decision Factors for Peering

# Why else to Peer ... or not to Peer

#### Lower Transit Cost

- As discussed
- Only one Factor among others

#### Improved Quality of Service (QoS)

- ▶ Redundancy → Higher Reliability
- Lower Latency for Local Traffic
- Fewer Package Losses

#### Control Over Traffic Flows

#### Technical Competences

- ▶ BGP Protocol Specialists for Routing Setup
- Problem Support: No SLA as with Transit Providers

19

#### How and With Whom to Peer ... or not to Peer

#### Strategic Decisions

- ▶ Enlarge Network to increase Attractiveness
- Avoid Peering with Possible Customers
- Improve Corporate Image by Peering publicly
- Information Asymmetries among Market Participants
- The Art of Peering
  - End Run Tactic
  - Traffic Manipulation: Increase Peer Transit Load
  - Wide Scale Open Peering Policy
  - Bluff
  - Aggressive Traffic Build-up
  - Friendship-based Peering

#### Political Moves

- Refusing to Peer with Competing ISPs
- Unfair Peering Policies to maintain Market Power
- Interpersonal Differences

Source: E. Norton, Equinix

20

#### Reasons not to Peer with smaller ISP's

- Scenario: Large ISP A Smaller ISP B
- Backbone Freeriding
  - ▶ B uses A's Upstream Capacity to avoid Transit Cost
  - Avoidable by proper BGP Configuration



#### Business Stealing

- Assumption: A and B address the same Customer Base
- By Peering, A gives up its competitive Advantage of lower Latency for local Access
  - e.g. to Webserver on ISP A
  - Reduction of Network Externalities



# Peering in Switzerland



# **Current Situation – Present Internet Exchanges in Switzerland**

#### CIXP operated by CERN

- Distributed neutral Internet Exchange Point
- 2 Datacenters in Geneva
- 29 ISP's connected
- ▶ Since 1989

#### TIX operated by IXEurope

- 2 Datacenters in Zurich
- ▶ 57 ISP's connected
- ▶ Since 1998

#### SwissIX

- ▶ Non Profit Organisation, Free of Charges (full Sponsorship)
- Distributed Peering Platform
- 5 Datacenters in Zurich, Bern, Basel and Glattbrugg
- 57 ISP's connected
- ▶ Since 2001

# **Current Situation – Present ISP Players**

#### Swisscom IP Plus

- ▶ 10 Peering Agreements at TIX (2000Mbps)
- ▶ 7 Peering Agreements at CIXP (1000Mbps)
- Large Content Provider Customer Base
- Large Content Supplier Base

#### Cablecom

Large Content Supplier Customer Base

#### ▶ Init7

- Open Peering Policy
- Large Content Provider Customer Base
- ▶ ~ 600 Peering Agreements on several Sites

#### CERN

European Organization for Nuclear Research



# Further Settlement Models

# Settlement Models Today (1/2)

- Today: Transit or Peering Relationship?
- Problems of Customer / Transit Agreements:
  - Often unnecessary Routing over Upstream Layers
  - ▶ Lower QoS due to higher Latency, Burst Rate, etc.
- **▶** Problems of Peering Agreements:
  - Backbone Freeriding
  - Business Stealing Effect
  - "Unfair" Cost Distribution
  - ▶ Closed Peering Policies



# Settlement Models Today (2/2)

- Deadweight Loss from "No-Peering" Decisions
  - Lower QoS
  - Higher Costs for Consumer
  - ▶ Economical nonsense to route traffic over U.S.
- Settlement Models in the Telephony Market
  - Differences:
    - End-to-End Connection, no dynamic Routing
    - Hard QoS Constraints
    - Sender pays
  - Similarities:
    - Bilateral Agreements
- New Settlement Models for the Internet?
  - Comparison to the Post Market in the 17th / 18th Century

#### **Settlement Models - Dimensions**

#### Service Categories / Architecture:

- Best-effort, Packet based (no QoS)
- DiffServ, connectionless also (some QoS)
- IntServ, connection-oriented (QoS)

#### Charging Unit

Per Contract, per Packet, per Flow, per Reservation, ...?

#### Pricing Strategies

▶ Cost Sharing, different Classes, SLA's, Auctions

#### Resulting Dimensions

▶ Economical Efficiency, technological Efficiency, social Welfare

# **Examples of Settlement Models (Best Effort)**

#### Smart Market

- Sender based Auction
- "Bid" Field in Header to indicate Willingness to pay
- ► Congestion Situation: Packet is sent when: "Bid"-Field > Market-clearing Price = Bid of lowest-Priority admitted Packet
- Vickrey Auction: Optimal to bid true Values

#### Paris-Metro Pricing

- ► Equal Service but different Prices (!)
- Self-regulating Market



# **Examples of Settlement Models (Best Effort)**

#### Smart Market

- + "Fair Value" for Packet Price
- + Takes the Social Cost of delivering Packet into Account
- Very high Accounting overhead
- Packet Loss Problem not considered

#### Paris-Metro Pricing

- + Self-regulating
- Problem when Service Providers underprice each other →Loss of Advantage

#### No real QoS-Levels:

- In both Cases still a best Effort Service
- VoIP, Video-Streams, important Data Flows?

# **Examples of Settlement Models (DiffServ)**

#### DiffServ Bandwith Brokers as Mini-Markets

- ▶ ISP Border Routers as Brokers
- SLA Definition for Transmission
- Explicit SLA between two ISP Implicit SLA between A and B



Figure 1: DiffServ network model

# **Examples of Settlement Models (DiffServ)**

#### DiffServ Bandwith Brokers as Mini-Markets

- SLA for QoS
- Border Routers serve as Brokers for AS / ISP
- Before Data is sent, SLA has to be defined and priced
- ▶ Many SLA over the whole End-to-End Connection
- Overbuying of Traffic vs. Accounting Overhead
- Price Announcements occasionally



Figure 1: DiffServ network model

# **Examples of Settlement Models (DiffServ)**

#### DiffServ Bandwith Brokers as Mini-Markets

- + QoS Guarantees
- + Economic Efficiency
- Signalling Overhead
- No real Pricing Schemes yet
- No Price Transparency for Customers



Figure 1: DiffServ network model



# **Examples of Settlement Models (IntServ)**

#### Per-flow Reservation using RSVP

- "Hard" QoS Guarantees between Sender and Receiver
- Explicit Reservation
- Prices added to RESV Message
- Auctioning of QoS Levels and Prices
- Possible also with edge Pricing



# **Examples of Settlement Models (IntServ)**

- Per-flow Reservation using RSVP
  - + Hard QoS Guarantees
  - Large Accounting and Communication Overhead
  - Price Transparency





#### **Conclusions**

#### High Impact on today's Internet Structure

- Internet as technical Backbone of the Economy
- Peering has flattened the Internet's Hierarchy
- More Interconnections: QoS, Redundancy

#### Strategic Decisions lead to Deadweight Losses

- Thinking outside the Box "Peer / Transit"
- Need for more flexible Settlement Models.

#### Increasing Technological Requirements for the Internet

- VoIP, Video Telephony, VOD, IPTV, globally distributed Offices
- Need for high Quality of Service guarantees

#### ▶ There's no commercial Peering Market

Savings, but no Revenues

#### Invitation

We would like to invite you to visit one of SwissIX's Datacenters



- **▶** February 2nd, 2006
  - ▶ 13:30 after the IE Seminar
  - ▶ Guided Tour: app. 1 Hour
  - Location: interxion in Glattbrugg



- ▶ Please sign up here or via eMail to sinja@access.unizh.ch
  - Deadline for eMail Sign up: 23rd December, 2005
  - Maximum 15 Participants (first come first serve)





# **Topics**

#### ▶ Internet's Transition and Retail Market admit high Economies of Scale

- ▶ Aggregation of Providers → Higher Market Concentration
- Centralisation vs. today's decentralised Structure?
- Decreased social Welfare?

#### Governmental Regulations vs. Market Dynamics?

- High Quality Internet as "Service publique"?
- Mandatory open Peering Policy for ISP's?

#### Quality Issues

- ▶ Importance of Service Level Agreements?
- Price Differentiation?



## **Peering Settlement Game**

#### Settings

- ▶ 4 competing ISP's with Venture Funding of \$25'000 each
- Squares representing a Territory of Customers
- 4 Internet Exchanges where Peering can be settled
- ▶ 2 Transit Providers connected to the Internet

#### The Game:

- ▶ ISP rolls the die (representing the regional Marketing Campaign Success) → Number of Squares to expand by
- ▶ If accessing an IX: Peering Negotiations with collocated ISPs at the IX can be started
  - Peering Cost to be split: \$2'000 recurring Fees and Loss of 2 Turns to implement Peering Installation
  - No Transit Traffic among Peering Partners for the respective Customers

#### Cost Rules for ISPs (recurring every Round):

- ▶ Provider Revenue: \$2'000 per occupied Square
- ▶ Transit Costs: \$1'000 per Square occupied by Competition
- Specific Peering Costs

#### Player's Objective

Profit Maximisation