5. Satellite Systems

History and Orbits
Routing, Localization, and Hand-over
Systems

History of Satellite Communications

- 1945 Arthur C. Clarke about “Extra Terrestrial Relays“
- 1957 First satellite SPUTNIK
- 1960 First reflecting communication satellite ECHO
- 1963 First geo-stationary satellite SYNCOM
- 1965 First commercial geo-stationary satellite “Early Bird”
 - INTELSAT I: 240 duplex telephone channels or
 1 TV channel, 1.5 years lifetime
- 1976 Three MARISAT satellites (maritime communication)
- 1982 First mobile satellite telephone system INMARSAT-A
- 1988 First satellite system for mobile phones and
data communication INMARSAT-C
- 1993 First digital satellite telephone system
- 1998 Global satellite systems for small mobile phones
Applications

- **Traditional:**
 - Weather satellites
 - Radio and TV broadcast satellites
 - Military satellites
 - Satellites for navigation and localization (e.g., GPS)

- **Telecommunication:**
 - Global telephone connections
 - Backbone for global networks
 - Connections for communication in remote places or underdeveloped areas
 - Global mobile communication

→ Satellite systems extend cellular phone systems (e.g., GSM or AMPS)

Classic Satellite Systems

- Mobile User Link (MUL)
- Inter Satellite Link (ISL)
- Gateway Link (GWL)
- Footprint: Small Cells (Spotbeams)
- Base Station or Gateway

PSTN: Public Switched Telephone Network

User Data

ISDN

PSTN

GSM

© 2005 Burkhard Stiller and Jochen Schiller FU Berlin
Basics

- Satellites in circular orbits:
 - Attractive force \(F_g = m \cdot g \cdot \left(\frac{R}{r} \right)^2 \)
 - Centrifugal force \(F_c = m \cdot r \cdot \omega^2 \)
 - \(m \): mass of the satellite
 - \(R \): radius of the earth (\(R = 6370 \) km)
 - \(r \): distance to the center of the earth
 - \(g \): acceleration of gravity (\(g = 9.81 \) m/s\(^2\))
 - \(\omega \): angular velocity (\(\omega = 2 \pi f \), \(f \): rotation frequency)

- Stable orbit:
 - \(F_g = F_c \)

\[
r = 3 \sqrt{\frac{gR^2}{(2\pi f)^2}}
\]
Terms and Definitions

- Elliptic or circular orbits
- Complete rotation time depends on distance satellite-earth
- Inclination: angle between orbit and equator
- Elevation: angle between satellite and horizon
- LOS (Line of Sight) to the satellite necessary for connection:
 - High elevation needed, less absorption due to, e.g., buildings
- Up-link: connection base station to satellite
- Down-link: connection satellite to base station
- Typically separated frequencies for up-link and down-link:
 - Transponder used for sending/receiving and shifting of frequencies
 - Transparent transponder: only shift of frequencies
 - Regenerative transponder: additionally signal regeneration

Inclination

[Diagram showing satellite orbit with perigee and inclination angle δ]

- Plane of Satellite Orbit
- Satellite Orbit
- Perigee
- Inclination δ
- Equatorial plane
Elevation

Angle ϵ between center of satellite beam and surface

Minimal elevation:
Elevation needed at least to communicate with the satellite

Link Budget of Satellites

- Parameters like attenuation or received power determined by four parameters:
 - Sending power
 - Gain of sending antenna
 - Distance between sender and receiver
 - Gain of receiving antenna

- Problems:
 - Varying strength of received signal due to multi-path propagation
 - Interruptions due to shadowing of signal (no LOS)

- Possible solutions:
 - Link Margin to eliminate variations in signal strength
 - Satellite diversity (usage of several visible satellites at the same time) helps to use less sending power

$$L = \left(\frac{4\pi rf}{c} \right)^2$$

L: Loss
f: carrier frequency
r: distance
c: speed of light
Atmospheric Attenuation

Example: Satellite systems at 4-6 GHz

<table>
<thead>
<tr>
<th>Elevation of Satellite</th>
<th>Attenuation of Signal in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td>50</td>
</tr>
<tr>
<td>10°</td>
<td>40</td>
</tr>
<tr>
<td>20°</td>
<td>30</td>
</tr>
<tr>
<td>30°</td>
<td>20</td>
</tr>
<tr>
<td>40°</td>
<td>10</td>
</tr>
<tr>
<td>50°</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Rain Absorption**
- **Fog Absorption**
- **Atmospheric Absorption**

Orbits

- Four different types of satellite orbits identified depending on shape and diameter of orbit:
 - **GEO**: Geo-stationary orbit, about 36,000 km above earth surface
 - **LEO (Low Earth Orbit)**: About 500 - 1,500 km
 - **MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit)**: About 6,000 - 20,000 km
 - **HEO (Highly Elliptical Orbit)**: elliptical orbits
- **Van-Allen-Belts**:
 - Ionized particles at 2,000 - 6,000 km and 15,000 - 30,000 km above earth surface
Routing

- One solution:
 - Inter-satellite links (ISL)
 - Reduced number of gateways needed
 - Forward connections or data packets within the satellite network as long as possible
 - Only one uplink and one downlink per direction needed for the connection of two mobile phones

- Problems:
 - More complex focusing of antennas between satellites
 - High system complexity due to moving routers
 - Higher fuel consumption
 - Thus shorter lifetime

- Examples:
 - Iridium and Teledesic planned with ISL
 - Other systems use gateways and additionally terrestrial networks

Localization of Mobile Stations

- Mechanisms similar to GSM
- Gateways maintain registers with user data:
 - HLR (Home Location Register):
 - Static user data
 - VLR (Visitor Location Register):
 - (Last known) location of the mobile station
 - SUMR (Satellite User Mapping Register):
 - Satellite assigned to a mobile station
 - Positions of all satellites

- Registration of mobile stations:
 - Localization of the mobile station via the satellite’s position
 - Requesting user data from HLR and updating VLR and SUMR

- Calling a mobile station:
 - Localization using HLR/VLR similar to GSM
 - Connection setup using the appropriate satellite
Hand-over in Satellite Systems

- Additional situations for hand-over in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites
 - Intra-satellite hand-over
 - Hand-over from one spot beam to another
 - Mobile station still in the footprint of the satellite, but in another cell
 - Inter-satellite hand-over
 - Hand-over from one satellite to another satellite
 - Mobile station leaves the footprint of one satellite
 - Gateway hand-over
 - Hand-over from one gateway to another
 - Mobile station still in the footprint of a satellite, but gateway leaves footprint
 - Inter-system hand-over
 - Hand-over from the satellite network to a terrestrial cellular network
 - Mobile station can reach a terrestrial network again which might be cheaper, has a lower latency

Geo-stationary Satellites

- Orbit 35,786 km distance to earth surface, orbit in equatorial plane (inclination 0°)
 - Complete rotation exactly one day, satellite is synchronous to earth rotation
 - Fixed antenna positions, no adjusting necessary
 - Satellites typically have a large footprint (up to 34% of earth surface!), therefore, difficult to reuse frequencies
 - Bad elevations in areas with latitude above 60° due to fixed position above the equator
 - High transmission power needed
 - High latency due to long distance (about 275 ms)

- Not useful for global coverage for small mobile phones and data transmission
- Typically used for radio and TV transmission
LEO Systems

- Orbit about 500 - 1,500 km above earth surface
- Visibility of a satellite about 10 - 40 minutes
- Global radio coverage possible
- Latency comparable with terrestrial long distance connections, ca. 5 - 10 ms
- Smaller footprints, better frequency reuse
- But now handover necessary from one satellite to another
- Many satellites necessary for global coverage
- More complex systems due to moving satellites
- Examples:
 - Iridium (start 1998, 66 satellites):
 - Bankruptcy in 2000, deal with US DoD (free use, saving from "de-orbiting")
 - Globalstar (start 1999, 48 satellites):
 - Not many customers (2001: 44000), low stand-by times for mobiles

MEO Systems

- Orbit about 5,000 - 12,000 km above earth surface
- Comparison with LEO systems:
 - Slower moving satellites
 - Less satellites needed
 - Simpler system design
 - For many connections no hand-over needed
 - Higher latency, ca. 70 - 80 ms
 - Higher sending power needed
 - Special antennas for small footprints needed
- Examples:
 - ICO (Intermediate Circular Orbit, Inmarsat) start about 2000
 - Bankruptcy, but planning for IP traffic
 - Planned joint ventures with Teledesic, Ellipso – cancelled again,
 initial components planned for 2003, full new start planned for 2005
Overview of LEO/MEO Systems

<table>
<thead>
<tr>
<th></th>
<th>Iridium</th>
<th>Globalstar</th>
<th>ICO</th>
<th>Teledesic</th>
</tr>
</thead>
<tbody>
<tr>
<td># Satellites</td>
<td>66 + 6</td>
<td>48 + 4</td>
<td>10 + 2</td>
<td>288</td>
</tr>
<tr>
<td>Altitude (km)</td>
<td>780</td>
<td>1414</td>
<td>10390</td>
<td>ca. 700</td>
</tr>
<tr>
<td>Coverage</td>
<td>global</td>
<td>±70° latitude</td>
<td>global</td>
<td>global</td>
</tr>
<tr>
<td>Min. Elevation</td>
<td>8°</td>
<td>20°</td>
<td>20°</td>
<td>40°</td>
</tr>
<tr>
<td>Frequencies [GHz (about)]</td>
<td>1.6 MS ↑</td>
<td>1.6 MS ↑</td>
<td>2 MS ↑</td>
<td>19 ↓</td>
</tr>
<tr>
<td></td>
<td>29.2 ↑</td>
<td>2.5 MS ↓</td>
<td>2.2 MS ↓</td>
<td>28.8 ↑</td>
</tr>
<tr>
<td></td>
<td>19.5 ↓</td>
<td>5.1 ↑</td>
<td>5.2 ↑</td>
<td>62 ISL</td>
</tr>
<tr>
<td></td>
<td>23.3 ISL</td>
<td>6.9 ↓</td>
<td>7 ↓</td>
<td></td>
</tr>
<tr>
<td>Access Method</td>
<td>FDMA/TDMA</td>
<td>CDMA</td>
<td>FDMA/TDMA</td>
<td>FDMA/TDMA</td>
</tr>
<tr>
<td>ISL</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Bit Rate</td>
<td>2.4 kbit/s</td>
<td>9.6 kbit/s</td>
<td>4.8 kbit/s</td>
<td>64 Mbit/s ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/64 Mbit/s ↑</td>
</tr>
<tr>
<td># Channels</td>
<td>4000</td>
<td>2700</td>
<td>4500</td>
<td>2500</td>
</tr>
<tr>
<td>Lifetime [years]</td>
<td>5-8</td>
<td>7.5</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Cost Estimation</td>
<td>4.4 B$</td>
<td>2.9 B$</td>
<td>4.5 B$</td>
<td>9 B$</td>
</tr>
</tbody>
</table>